Optimal. Leaf size=23 \[ e^{e^{-2 \left (-5-x-\left (\frac {1}{9}-\log (4)\right )^2\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 3, number of rules used = 3, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {12, 2282, 2194} \begin {gather*} e^{\frac {e^{\frac {2}{81} \left (81 x+406+81 \log ^2(4)\right )}}{2^{8/9}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 \int \exp \left (e^{\frac {1}{81} \left (812+162 x-36 \log (4)+162 \log ^2(4)\right )}+\frac {1}{81} \left (812+162 x-36 \log (4)+162 \log ^2(4)\right )\right ) \, dx\\ &=\operatorname {Subst}\left (\int e^x \, dx,x,e^{\frac {1}{81} \left (812+162 x-36 \log (4)+162 \log ^2(4)\right )}\right )\\ &=e^{e^{\frac {1}{81} \left (812+162 x-36 \log (4)+162 \log ^2(4)\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 23, normalized size = 1.00 \begin {gather*} e^{\frac {e^{\frac {812}{81}+2 x+2 \log ^2(4)}}{2^{8/9}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 17, normalized size = 0.74 \begin {gather*} e^{\left (e^{\left (8 \, \log \relax (2)^{2} + 2 \, x - \frac {8}{9} \, \log \relax (2) + \frac {812}{81}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.50, size = 18, normalized size = 0.78 \begin {gather*} e^{\left (\frac {1}{2} \cdot 2^{\frac {1}{9}} e^{\left (8 \, \log \relax (2)^{2} + 2 \, x + \frac {812}{81}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 0.78
method | result | size |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{8 \ln \relax (2)^{2}-\frac {8 \ln \relax (2)}{9}+2 x +\frac {812}{81}}}\) | \(18\) |
default | \({\mathrm e}^{{\mathrm e}^{8 \ln \relax (2)^{2}-\frac {8 \ln \relax (2)}{9}+2 x +\frac {812}{81}}}\) | \(18\) |
norman | \({\mathrm e}^{{\mathrm e}^{8 \ln \relax (2)^{2}-\frac {8 \ln \relax (2)}{9}+2 x +\frac {812}{81}}}\) | \(18\) |
risch | \({\mathrm e}^{\frac {2^{\frac {1}{9}} {\mathrm e}^{8 \ln \relax (2)^{2}+\frac {812}{81}+2 x}}{2}}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.81, size = 18, normalized size = 0.78 \begin {gather*} e^{\left (\frac {1}{2} \cdot 2^{\frac {1}{9}} e^{\left (8 \, \log \relax (2)^{2} + 2 \, x + \frac {812}{81}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 19, normalized size = 0.83 \begin {gather*} {\mathrm {e}}^{\frac {2^{1/9}\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{812/81}\,{\mathrm {e}}^{8\,{\ln \relax (2)}^2}}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.96 \begin {gather*} e^{\frac {\sqrt [9]{2} e^{2 x + 8 \log {\relax (2 )}^{2} + \frac {812}{81}}}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________