Optimal. Leaf size=22 \[ x \left (-5+5 \left (x-\frac {2 \log \left (\log \left (-\frac {3}{2}+\frac {1}{x}\right )\right )}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-20+\left (10 x-35 x^2+30 x^3\right ) \log \left (\frac {2-3 x}{2 x}\right )}{\left (-2 x+3 x^2\right ) \log \left (\frac {2-3 x}{2 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-20+\left (10 x-35 x^2+30 x^3\right ) \log \left (\frac {2-3 x}{2 x}\right )}{x (-2+3 x) \log \left (\frac {2-3 x}{2 x}\right )} \, dx\\ &=\int \frac {5 \left (-2+7 x-6 x^2+\frac {4}{x \log \left (-\frac {3}{2}+\frac {1}{x}\right )}\right )}{2-3 x} \, dx\\ &=5 \int \frac {-2+7 x-6 x^2+\frac {4}{x \log \left (-\frac {3}{2}+\frac {1}{x}\right )}}{2-3 x} \, dx\\ &=5 \int \left (-1+2 x-\frac {4}{x (-2+3 x) \log \left (-\frac {3}{2}+\frac {1}{x}\right )}\right ) \, dx\\ &=-5 x+5 x^2-20 \int \frac {1}{x (-2+3 x) \log \left (-\frac {3}{2}+\frac {1}{x}\right )} \, dx\\ &=-5 x+5 x^2-20 \int \left (-\frac {1}{2 x \log \left (-\frac {3}{2}+\frac {1}{x}\right )}+\frac {3}{2 (-2+3 x) \log \left (-\frac {3}{2}+\frac {1}{x}\right )}\right ) \, dx\\ &=-5 x+5 x^2+10 \int \frac {1}{x \log \left (-\frac {3}{2}+\frac {1}{x}\right )} \, dx-30 \int \frac {1}{(-2+3 x) \log \left (-\frac {3}{2}+\frac {1}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.02, size = 20, normalized size = 0.91 \begin {gather*} 5 \left (-x+x^2-2 \log \left (\log \left (-\frac {3}{2}+\frac {1}{x}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 23, normalized size = 1.05 \begin {gather*} 5 \, x^{2} - 5 \, x - 10 \, \log \left (\log \left (-\frac {3 \, x - 2}{2 \, x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 53, normalized size = 2.41 \begin {gather*} \frac {10 \, {\left (\frac {3 \, x - 2}{x} - 1\right )}}{\frac {{\left (3 \, x - 2\right )}^{2}}{x^{2}} - \frac {6 \, {\left (3 \, x - 2\right )}}{x} + 9} - 10 \, \log \left (\log \left (-\frac {3 \, x - 2}{2 \, x}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 19, normalized size = 0.86
method | result | size |
derivativedivides | \(-10 \ln \left (\ln \left (\frac {1}{x}-\frac {3}{2}\right )\right )-5 x +5 x^{2}\) | \(19\) |
default | \(-10 \ln \left (\ln \left (\frac {1}{x}-\frac {3}{2}\right )\right )-5 x +5 x^{2}\) | \(19\) |
norman | \(-5 x +5 x^{2}-10 \ln \left (\ln \left (\frac {-3 x +2}{2 x}\right )\right )\) | \(24\) |
risch | \(-5 x +5 x^{2}-10 \ln \left (\ln \left (\frac {-3 x +2}{2 x}\right )\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 27, normalized size = 1.23 \begin {gather*} 5 \, x^{2} - 5 \, x - 10 \, \log \left (-\log \relax (2) - \log \relax (x) + \log \left (-3 \, x + 2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.49, size = 23, normalized size = 1.05 \begin {gather*} 5\,x^2-10\,\ln \left (\ln \left (-\frac {3\,x-2}{2\,x}\right )\right )-5\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.91 \begin {gather*} 5 x^{2} - 5 x - 10 \log {\left (\log {\left (\frac {1 - \frac {3 x}{2}}{x} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________