Optimal. Leaf size=27 \[ x \left (5-\frac {e^9 (1-x)}{x^2}+\log \left (\frac {e^{e^x}}{5}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 11, number of rules used = 6, integrand size = 34, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.176, Rules used = {14, 2176, 2194, 2282, 2158, 29} \begin {gather*} e^x x+5 x-\frac {e^9}{x}-\left (e^x-\log \left (\frac {e^{e^x}}{5}\right )\right ) \log \left (e^x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 2158
Rule 2176
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x x+\frac {e^9+5 x^2+x^2 \log \left (\frac {e^{e^x}}{5}\right )}{x^2}\right ) \, dx\\ &=\int e^x x \, dx+\int \frac {e^9+5 x^2+x^2 \log \left (\frac {e^{e^x}}{5}\right )}{x^2} \, dx\\ &=e^x x-\int e^x \, dx+\int \left (\frac {e^9+5 x^2}{x^2}+\log \left (\frac {e^{e^x}}{5}\right )\right ) \, dx\\ &=-e^x+e^x x+\int \frac {e^9+5 x^2}{x^2} \, dx+\int \log \left (\frac {e^{e^x}}{5}\right ) \, dx\\ &=-e^x+e^x x+\int \left (5+\frac {e^9}{x^2}\right ) \, dx+\operatorname {Subst}\left (\int \frac {\log \left (\frac {e^x}{5}\right )}{x} \, dx,x,e^x\right )\\ &=-\frac {e^9}{x}+5 x+e^x x-\left (e^x-\log \left (\frac {e^{e^x}}{5}\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )\\ &=-\frac {e^9}{x}+5 x+e^x x-x \left (e^x-\log \left (\frac {e^{e^x}}{5}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 0.89 \begin {gather*} -\frac {e^9}{x}+5 x+x \log \left (\frac {e^{e^x}}{5}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 27, normalized size = 1.00 \begin {gather*} \frac {x^{2} e^{x} - x^{2} \log \relax (5) + 5 \, x^{2} - e^{9}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 27, normalized size = 1.00 \begin {gather*} \frac {x^{2} e^{x} - x^{2} \log \relax (5) + 5 \, x^{2} - e^{9}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.11
method | result | size |
risch | \(x \ln \left ({\mathrm e}^{{\mathrm e}^{x}}\right )-\frac {2 x^{2} \ln \relax (5)-10 x^{2}+2 \,{\mathrm e}^{9}}{2 x}\) | \(30\) |
default | \(5 x -\frac {{\mathrm e}^{9}}{x}+{\mathrm e}^{x} x +\ln \left ({\mathrm e}^{x}\right ) \ln \left (\frac {{\mathrm e}^{{\mathrm e}^{x}}}{5}\right )-{\mathrm e}^{x} \ln \left ({\mathrm e}^{x}\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 32, normalized size = 1.19 \begin {gather*} {\left (x - 1\right )} e^{x} - x e^{x} + x \log \left (\frac {1}{5} \, e^{\left (e^{x}\right )}\right ) + 5 \, x - \frac {e^{9}}{x} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 18, normalized size = 0.67 \begin {gather*} x\,\left ({\mathrm {e}}^x-\ln \relax (5)+5\right )-\frac {{\mathrm {e}}^9}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 15, normalized size = 0.56 \begin {gather*} x e^{x} + x \left (5 - \log {\relax (5 )}\right ) - \frac {e^{9}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________