3.67.53 e9+5x2+exx3+x2log(eex5)x2dx

Optimal. Leaf size=27 x(5e9(1x)x2+log(eex5))

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 39, normalized size of antiderivative = 1.44, number of steps used = 11, number of rules used = 6, integrand size = 34, number of rulesintegrand size = 0.176, Rules used = {14, 2176, 2194, 2282, 2158, 29} exx+5xe9x(exlog(eex5))log(ex)

Antiderivative was successfully verified.

[In]

Int[(E^9 + 5*x^2 + E^x*x^3 + x^2*Log[E^E^x/5])/x^2,x]

[Out]

-(E^9/x) + 5*x + E^x*x - (E^x - Log[E^E^x/5])*Log[E^x]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 2158

Int[(v_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(b*x)/a, x] - Dist[(b*u
- a*v)/a, Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

integral=(exx+e9+5x2+x2log(eex5)x2)dx=exxdx+e9+5x2+x2log(eex5)x2dx=exxexdx+(e9+5x2x2+log(eex5))dx=ex+exx+e9+5x2x2dx+log(eex5)dx=ex+exx+(5+e9x2)dx+Subst(log(ex5)xdx,x,ex)=e9x+5x+exx(exlog(eex5))Subst(1xdx,x,ex)=e9x+5x+exxx(exlog(eex5))

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 24, normalized size = 0.89 e9x+5x+xlog(eex5)

Antiderivative was successfully verified.

[In]

Integrate[(E^9 + 5*x^2 + E^x*x^3 + x^2*Log[E^E^x/5])/x^2,x]

[Out]

-(E^9/x) + 5*x + x*Log[E^E^x/5]

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 27, normalized size = 1.00 x2exx2log(5)+5x2e9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(1/5*exp(exp(x)))+exp(x)*x^3+exp(9)+5*x^2)/x^2,x, algorithm="fricas")

[Out]

(x^2*e^x - x^2*log(5) + 5*x^2 - e^9)/x

________________________________________________________________________________________

giac [A]  time = 0.57, size = 27, normalized size = 1.00 x2exx2log(5)+5x2e9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(1/5*exp(exp(x)))+exp(x)*x^3+exp(9)+5*x^2)/x^2,x, algorithm="giac")

[Out]

(x^2*e^x - x^2*log(5) + 5*x^2 - e^9)/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 30, normalized size = 1.11




method result size



risch xln(eex)2x2ln(5)10x2+2e92x 30
default 5xe9x+exx+ln(ex)ln(eex5)exln(ex) 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*ln(1/5*exp(exp(x)))+exp(x)*x^3+exp(9)+5*x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

x*ln(exp(exp(x)))-1/2*(2*x^2*ln(5)-10*x^2+2*exp(9))/x

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 32, normalized size = 1.19 (x1)exxex+xlog(15e(ex))+5xe9x+ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2*log(1/5*exp(exp(x)))+exp(x)*x^3+exp(9)+5*x^2)/x^2,x, algorithm="maxima")

[Out]

(x - 1)*e^x - x*e^x + x*log(1/5*e^(e^x)) + 5*x - e^9/x + e^x

________________________________________________________________________________________

mupad [B]  time = 0.11, size = 18, normalized size = 0.67 x(exln(5)+5)e9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(9) + x^3*exp(x) + x^2*log(exp(exp(x))/5) + 5*x^2)/x^2,x)

[Out]

x*(exp(x) - log(5) + 5) - exp(9)/x

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 15, normalized size = 0.56 xex+x(5log(5))e9x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2*ln(1/5*exp(exp(x)))+exp(x)*x**3+exp(9)+5*x**2)/x**2,x)

[Out]

x*exp(x) + x*(5 - log(5)) - exp(9)/x

________________________________________________________________________________________