Optimal. Leaf size=20 \[ e^3-e^{2 e^x}+e^x+\frac {1}{\log ^4(x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 7, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6688, 2194, 2282, 2302, 30} \begin {gather*} -e^{2 e^x}+e^x+\frac {1}{\log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 30
Rule 2194
Rule 2282
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^x-2 e^{2 e^x+x}-\frac {4}{x \log ^5(x)}\right ) \, dx\\ &=-\left (2 \int e^{2 e^x+x} \, dx\right )-4 \int \frac {1}{x \log ^5(x)} \, dx+\int e^x \, dx\\ &=e^x-2 \operatorname {Subst}\left (\int e^{2 x} \, dx,x,e^x\right )-4 \operatorname {Subst}\left (\int \frac {1}{x^5} \, dx,x,\log (x)\right )\\ &=-e^{2 e^x}+e^x+\frac {1}{\log ^4(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.85 \begin {gather*} -e^{2 e^x}+e^x+\frac {1}{\log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 34, normalized size = 1.70 \begin {gather*} \frac {{\left (e^{\left (2 \, x\right )} \log \relax (x)^{4} - e^{\left (x + 2 \, e^{x}\right )} \log \relax (x)^{4} + e^{x}\right )} e^{\left (-x\right )}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 34, normalized size = 1.70 \begin {gather*} \frac {{\left (e^{\left (2 \, x\right )} \log \relax (x)^{4} - e^{\left (x + 2 \, e^{x}\right )} \log \relax (x)^{4} + e^{x}\right )} e^{\left (-x\right )}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.75
method | result | size |
default | \({\mathrm e}^{x}-{\mathrm e}^{2 \,{\mathrm e}^{x}}+\frac {1}{\ln \relax (x )^{4}}\) | \(15\) |
risch | \({\mathrm e}^{x}-{\mathrm e}^{2 \,{\mathrm e}^{x}}+\frac {1}{\ln \relax (x )^{4}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 14, normalized size = 0.70 \begin {gather*} \frac {1}{\log \relax (x)^{4}} + e^{x} - e^{\left (2 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.19, size = 14, normalized size = 0.70 \begin {gather*} {\mathrm {e}}^x-{\mathrm {e}}^{2\,{\mathrm {e}}^x}+\frac {1}{{\ln \relax (x)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 15, normalized size = 0.75 \begin {gather*} e^{x} - e^{2 e^{x}} + \frac {1}{\log {\relax (x )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________