3.67.70 1+log(x2)x2x2+xlog(x2)dx

Optimal. Leaf size=20 53+log(x)log(1+2xlog(x2))

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 15, normalized size of antiderivative = 0.75, number of steps used = 3, number of rules used = 2, integrand size = 22, number of rulesintegrand size = 0.091, Rules used = {6742, 6684} log(x)log(log(x2)2x+1)

Antiderivative was successfully verified.

[In]

Int[(-1 + Log[x^2])/(x - 2*x^2 + x*Log[x^2]),x]

[Out]

Log[x] - Log[1 - 2*x + Log[x^2]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(1x2(1+x)x(1+2xlog(x2)))dx=log(x)21+xx(1+2xlog(x2))dx=log(x)log(12x+log(x2))

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 15, normalized size = 0.75 log(x)log(12x+log(x2))

Antiderivative was successfully verified.

[In]

Integrate[(-1 + Log[x^2])/(x - 2*x^2 + x*Log[x^2]),x]

[Out]

Log[x] - Log[1 - 2*x + Log[x^2]]

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 19, normalized size = 0.95 12log(x2)log(2x+log(x2)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x^2)-1)/(x*log(x^2)-2*x^2+x),x, algorithm="fricas")

[Out]

1/2*log(x^2) - log(-2*x + log(x^2) + 1)

________________________________________________________________________________________

giac [A]  time = 0.23, size = 15, normalized size = 0.75 log(x)log(2x+log(x2)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x^2)-1)/(x*log(x^2)-2*x^2+x),x, algorithm="giac")

[Out]

log(x) - log(-2*x + log(x^2) + 1)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 16, normalized size = 0.80




method result size



risch ln(x)ln(ln(x2)2x+1) 16
norman ln(x)ln(2x1ln(x2)) 18



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(x^2)-1)/(x*ln(x^2)-2*x^2+x),x,method=_RETURNVERBOSE)

[Out]

ln(x)-ln(ln(x^2)-2*x+1)

________________________________________________________________________________________

maxima [A]  time = 0.40, size = 13, normalized size = 0.65 log(x)log(x+log(x)+12)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(x^2)-1)/(x*log(x^2)-2*x^2+x),x, algorithm="maxima")

[Out]

log(x) - log(-x + log(x) + 1/2)

________________________________________________________________________________________

mupad [B]  time = 4.21, size = 21, normalized size = 1.05 ln(x2)2ln(2xln(x2)1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x^2) - 1)/(x + x*log(x^2) - 2*x^2),x)

[Out]

log(x^2)/2 - log(2*x - log(x^2) - 1)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 14, normalized size = 0.70 log(x)log(2x+log(x2)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(x**2)-1)/(x*ln(x**2)-2*x**2+x),x)

[Out]

log(x) - log(-2*x + log(x**2) + 1)

________________________________________________________________________________________