Optimal. Leaf size=27 \[ x+\frac {4+2 \left (-2-\left (-3+e^3\right )^2+x\right )}{\log \left (-\frac {1}{5}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 43, normalized size of antiderivative = 1.59, number of steps used = 12, number of rules used = 9, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {6688, 2411, 12, 2353, 2297, 2298, 2302, 30, 2389} \begin {gather*} x-\frac {2 (1-5 x)}{5 \log \left (x-\frac {1}{5}\right )}-\frac {2 \left (44-30 e^3+5 e^6\right )}{5 \log \left (x-\frac {1}{5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 30
Rule 2297
Rule 2298
Rule 2302
Rule 2353
Rule 2389
Rule 2411
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {10 \left (9-6 e^3+e^6-x\right )}{(-1+5 x) \log ^2\left (-\frac {1}{5}+x\right )}+\frac {2}{\log \left (-\frac {1}{5}+x\right )}\right ) \, dx\\ &=x+2 \int \frac {1}{\log \left (-\frac {1}{5}+x\right )} \, dx+10 \int \frac {9-6 e^3+e^6-x}{(-1+5 x) \log ^2\left (-\frac {1}{5}+x\right )} \, dx\\ &=x+2 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-\frac {1}{5}+x\right )+10 \operatorname {Subst}\left (\int \frac {\frac {44}{5}-6 e^3+e^6-x}{5 x \log ^2(x)} \, dx,x,-\frac {1}{5}+x\right )\\ &=x+2 \text {li}\left (-\frac {1}{5}+x\right )+2 \operatorname {Subst}\left (\int \frac {\frac {44}{5}-6 e^3+e^6-x}{x \log ^2(x)} \, dx,x,-\frac {1}{5}+x\right )\\ &=x+2 \text {li}\left (-\frac {1}{5}+x\right )+2 \operatorname {Subst}\left (\int \left (-\frac {1}{\log ^2(x)}+\frac {44-30 e^3+5 e^6}{5 x \log ^2(x)}\right ) \, dx,x,-\frac {1}{5}+x\right )\\ &=x+2 \text {li}\left (-\frac {1}{5}+x\right )-2 \operatorname {Subst}\left (\int \frac {1}{\log ^2(x)} \, dx,x,-\frac {1}{5}+x\right )+\frac {1}{5} \left (2 \left (44-30 e^3+5 e^6\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x \log ^2(x)} \, dx,x,-\frac {1}{5}+x\right )\\ &=x-\frac {2 (1-5 x)}{5 \log \left (-\frac {1}{5}+x\right )}+2 \text {li}\left (-\frac {1}{5}+x\right )-2 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,-\frac {1}{5}+x\right )+\frac {1}{5} \left (2 \left (44-30 e^3+5 e^6\right )\right ) \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (-\frac {1}{5}+x\right )\right )\\ &=x-\frac {2 \left (44-30 e^3+5 e^6\right )}{5 \log \left (-\frac {1}{5}+x\right )}-\frac {2 (1-5 x)}{5 \log \left (-\frac {1}{5}+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.07, size = 42, normalized size = 1.56 \begin {gather*} x-2 \text {Ei}\left (\log \left (-\frac {1}{5}+x\right )\right )+\frac {2 \left (-9+6 e^3-e^6+x\right )}{\log \left (-\frac {1}{5}+x\right )}+2 \text {li}\left (-\frac {1}{5}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 26, normalized size = 0.96 \begin {gather*} \frac {x \log \left (x - \frac {1}{5}\right ) + 2 \, x - 2 \, e^{6} + 12 \, e^{3} - 18}{\log \left (x - \frac {1}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 26, normalized size = 0.96 \begin {gather*} \frac {x \log \left (x - \frac {1}{5}\right ) + 2 \, x - 2 \, e^{6} + 12 \, e^{3} - 18}{\log \left (x - \frac {1}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.81
method | result | size |
risch | \(x -\frac {2 \left ({\mathrm e}^{6}-6 \,{\mathrm e}^{3}-x +9\right )}{\ln \left (x -\frac {1}{5}\right )}\) | \(22\) |
norman | \(\frac {x \ln \left (x -\frac {1}{5}\right )+2 x -18-2 \,{\mathrm e}^{6}+12 \,{\mathrm e}^{3}}{\ln \left (x -\frac {1}{5}\right )}\) | \(29\) |
derivativedivides | \(x -\frac {1}{5}-\frac {2 \,{\mathrm e}^{6}}{\ln \left (x -\frac {1}{5}\right )}+\frac {12 \,{\mathrm e}^{3}}{\ln \left (x -\frac {1}{5}\right )}-\frac {88}{5 \ln \left (x -\frac {1}{5}\right )}+\frac {2 x -\frac {2}{5}}{\ln \left (x -\frac {1}{5}\right )}\) | \(45\) |
default | \(x -\frac {1}{5}-\frac {2 \,{\mathrm e}^{6}}{\ln \left (x -\frac {1}{5}\right )}+\frac {12 \,{\mathrm e}^{3}}{\ln \left (x -\frac {1}{5}\right )}-\frac {88}{5 \ln \left (x -\frac {1}{5}\right )}+\frac {2 x -\frac {2}{5}}{\ln \left (x -\frac {1}{5}\right )}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.59, size = 171, normalized size = 6.33 \begin {gather*} -\frac {2}{5} \, {\left (\log \relax (5) - \log \left (5 \, x - 1\right )\right )} \log \left (-\log \relax (5) + \log \left (5 \, x - 1\right )\right ) - \frac {2}{5} \, \log \left (x - \frac {1}{5}\right ) \log \left (-\log \relax (5) + \log \left (5 \, x - 1\right )\right ) - \frac {\log \left (x - \frac {1}{5}\right )^{2}}{5 \, {\left (\log \relax (5) - \log \left (5 \, x - 1\right )\right )}} + \frac {x {\left (\log \relax (5) - 2\right )} - x \log \left (5 \, x - 1\right )}{\log \relax (5) - \log \left (5 \, x - 1\right )} + \frac {2 \, e^{6}}{\log \relax (5) - \log \left (5 \, x - 1\right )} - \frac {12 \, e^{3}}{\log \relax (5) - \log \left (5 \, x - 1\right )} - \frac {2 \, \log \left (x - \frac {1}{5}\right )}{5 \, {\left (\log \relax (5) - \log \left (5 \, x - 1\right )\right )}} + \frac {18}{\log \relax (5) - \log \left (5 \, x - 1\right )} - \frac {1}{5} \, \log \left (5 \, x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 22, normalized size = 0.81 \begin {gather*} x+\frac {2\,x+12\,{\mathrm {e}}^3-2\,{\mathrm {e}}^6-18}{\ln \left (x-\frac {1}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 22, normalized size = 0.81 \begin {gather*} x + \frac {2 x - 2 e^{6} - 18 + 12 e^{3}}{\log {\left (x - \frac {1}{5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________