3.69.1 e5(52x)e5log(4)+eee2x2e5(e5+4x2+4xlog(4))e5dx

Optimal. Leaf size=27 (5eee2x2e5x)(x+log(4))

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 45, normalized size of antiderivative = 1.67, number of steps used = 3, number of rules used = 2, integrand size = 53, number of rulesintegrand size = 0.038, Rules used = {12, 2288} eee2x2e5(x2+xlog(4))x14(52x)2xlog(4)

Antiderivative was successfully verified.

[In]

Int[(E^5*(5 - 2*x) - E^5*Log[4] + E^((E^E - 2*x^2)/E^5)*(-E^5 + 4*x^2 + 4*x*Log[4]))/E^5,x]

[Out]

-1/4*(5 - 2*x)^2 - x*Log[4] - (E^((E^E - 2*x^2)/E^5)*(x^2 + x*Log[4]))/x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=(e5(52x)e5log(4)+eee2x2e5(e5+4x2+4xlog(4)))dxe5=14(52x)2xlog(4)+eee2x2e5(e5+4x2+4xlog(4))dxe5=14(52x)2xlog(4)eee2x2e5(x2+xlog(4))x

________________________________________________________________________________________

Mathematica [A]  time = 0.13, size = 34, normalized size = 1.26 x(5+x+log(4))14eee2x2e5(4x+log(256))

Antiderivative was successfully verified.

[In]

Integrate[(E^5*(5 - 2*x) - E^5*Log[4] + E^((E^E - 2*x^2)/E^5)*(-E^5 + 4*x^2 + 4*x*Log[4]))/E^5,x]

[Out]

-(x*(-5 + x + Log[4])) - (E^((E^E - 2*x^2)/E^5)*(4*x + Log[256]))/4

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 38, normalized size = 1.41 x2(x+2log(2))e((2x2ee)e(5))2xlog(2)+5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x*log(2)-exp(5)+4*x^2)*exp((exp(exp(1))-2*x^2)/exp(5))-2*exp(5)*log(2)+(-2*x+5)*exp(5))/exp(5),x
, algorithm="fricas")

[Out]

-x^2 - (x + 2*log(2))*e^(-(2*x^2 - e^e)*e^(-5)) - 2*x*log(2) + 5*x

________________________________________________________________________________________

giac [A]  time = 0.29, size = 50, normalized size = 1.85 (2xe5log(2)+(x25x)e5+(xe5+2e5log(2))e((2x2ee)e(5)))e(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x*log(2)-exp(5)+4*x^2)*exp((exp(exp(1))-2*x^2)/exp(5))-2*exp(5)*log(2)+(-2*x+5)*exp(5))/exp(5),x
, algorithm="giac")

[Out]

-(2*x*e^5*log(2) + (x^2 - 5*x)*e^5 + (x*e^5 + 2*e^5*log(2))*e^(-(2*x^2 - e^e)*e^(-5)))*e^(-5)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 44, normalized size = 1.63




method result size



risch 2xln(2)x2+5x+(2e5ln(2)xe5)e2x2e5+eee55 44
norman (2ln(2)+5)xx2xe(ee2x2)e52ln(2)e(ee2x2)e5 52
default e5(e5(x2+5x)eeee5e5xe2x2e52eeee5ln(2)e2x2e5e52xe5ln(2)) 76



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((8*x*ln(2)-exp(5)+4*x^2)*exp((exp(exp(1))-2*x^2)/exp(5))-2*exp(5)*ln(2)+(-2*x+5)*exp(5))/exp(5),x,method=
_RETURNVERBOSE)

[Out]

-2*x*ln(2)-x^2+5*x+(-2*exp(5)*ln(2)-x*exp(5))*exp(-2*x^2*exp(-5)+exp(exp(1))*exp(-5)-5)

________________________________________________________________________________________

maxima [A]  time = 0.45, size = 54, normalized size = 2.00 (2xe5log(2)+(x25x)e5+(xe(e(e5)+5)+2e(e(e5)+5)log(2))e(2x2e(5)))e(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x*log(2)-exp(5)+4*x^2)*exp((exp(exp(1))-2*x^2)/exp(5))-2*exp(5)*log(2)+(-2*x+5)*exp(5))/exp(5),x
, algorithm="maxima")

[Out]

-(2*x*e^5*log(2) + (x^2 - 5*x)*e^5 + (x*e^(e^(e - 5) + 5) + 2*e^(e^(e - 5) + 5)*log(2))*e^(-2*x^2*e^(-5)))*e^(
-5)

________________________________________________________________________________________

mupad [B]  time = 0.18, size = 51, normalized size = 1.89 5x2xln(2)2ee5ee2x2e5ln(2)xee5ee2x2e5x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(-5)*(2*exp(5)*log(2) - exp(exp(-5)*(exp(exp(1)) - 2*x^2))*(8*x*log(2) - exp(5) + 4*x^2) + exp(5)*(2*x
 - 5)),x)

[Out]

5*x - 2*x*log(2) - 2*exp(exp(-5)*exp(exp(1)) - 2*x^2*exp(-5))*log(2) - x*exp(exp(-5)*exp(exp(1)) - 2*x^2*exp(-
5)) - x^2

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 34, normalized size = 1.26 x2+x(52log(2))+(x2log(2))e2x2+eee5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((8*x*ln(2)-exp(5)+4*x**2)*exp((exp(exp(1))-2*x**2)/exp(5))-2*exp(5)*ln(2)+(-2*x+5)*exp(5))/exp(5),x
)

[Out]

-x**2 + x*(5 - 2*log(2)) + (-x - 2*log(2))*exp((-2*x**2 + exp(E))*exp(-5))

________________________________________________________________________________________