3.69.2
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [F] time = 15.49, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^x*(10*x + 14*x^2 + 4*x^3 + (16*x + 8*x^2)*Log[3] + 4*x*Log[3]^2) + (E^x*(2*x + 5*x^2 + 5*x^3 + 2*x^4 +
(4*x + 8*x^2 + 4*x^3)*Log[3] + (2*x + 2*x^2)*Log[3]^2) + E^x*(2 + 5*x + 5*x^2 + 2*x^3 + (4 + 8*x + 4*x^2)*Log[
3] + (2 + 2*x)*Log[3]^2)*Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x - 2*x^2
+ (-4 - 4*x)*Log[3] - 2*Log[3]^2]]*Log[Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2]]^2])/((2
*x + 3*x^2 + 2*x^3 + (4*x + 4*x^2)*Log[3] + 2*x*Log[3]^2 + (2 + 3*x + 2*x^2 + (4 + 4*x)*Log[3] + 2*Log[3]^2)*L
og[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Lo
g[3]^2]]),x]
[Out]
4*Defer[Int][E^x/((x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2
- x*(3 + Log[81])]]), x] + 2*Defer[Int][(E^x*x)/((x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x
+ Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]), x] - 2*(3 + Log[81])*(1 + (I*(3 + Log[81]))/Sqrt[7 + 16
*Log[3]^2 - Log[81]^2 + Log[6561]])*Defer[Int][E^x/((3 + 4*x + Log[81] - I*Sqrt[7 + 16*Log[3]^2 + 2*Log[81] -
Log[81]^2])*(x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(
3 + Log[81])]]), x] - ((32*I)*(1 + Log[3]^2 + Log[9])*Defer[Int][E^x/((-3 - 4*x - Log[81] + I*Sqrt[7 + 16*Log[
3]^2 + 2*Log[81] - Log[81]^2])*(x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(
1 + Log[3])^2 - x*(3 + Log[81])]]), x])/Sqrt[7 + 16*Log[3]^2 - Log[81]^2 + Log[6561]] - ((32*I)*(1 + Log[3]^2
+ Log[9])*Defer[Int][E^x/((3 + 4*x + Log[81] + I*Sqrt[7 + 16*Log[3]^2 + 2*Log[81] - Log[81]^2])*(x + Log[-2*x^
2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]), x])/Sqrt[
7 + 16*Log[3]^2 - Log[81]^2 + Log[6561]] - 2*(3 + Log[81])*(1 - (I*(3 + Log[81]))/Sqrt[7 + 16*Log[3]^2 - Log[8
1]^2 + Log[6561]])*Defer[Int][E^x/((3 + 4*x + Log[81] + I*Sqrt[7 + 16*Log[3]^2 + 2*Log[81] - Log[81]^2])*(x +
Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]),
x] + Defer[Int][E^x*Log[Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]^2], x] + Defer[Int][E^x*x*Lo
g[Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]^2], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 33, normalized size = 1.32
Antiderivative was successfully verified.
[In]
Integrate[(E^x*(10*x + 14*x^2 + 4*x^3 + (16*x + 8*x^2)*Log[3] + 4*x*Log[3]^2) + (E^x*(2*x + 5*x^2 + 5*x^3 + 2*
x^4 + (4*x + 8*x^2 + 4*x^3)*Log[3] + (2*x + 2*x^2)*Log[3]^2) + E^x*(2 + 5*x + 5*x^2 + 2*x^3 + (4 + 8*x + 4*x^2
)*Log[3] + (2 + 2*x)*Log[3]^2)*Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x -
2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2]]*Log[Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2]]^2
])/((2*x + 3*x^2 + 2*x^3 + (4*x + 4*x^2)*Log[3] + 2*x*Log[3]^2 + (2 + 3*x + 2*x^2 + (4 + 4*x)*Log[3] + 2*Log[3
]^2)*Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3]
- 2*Log[3]^2]]),x]
[Out]
E^x*x*Log[Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]^2]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 34, normalized size = 1.36
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((2*x+2)*log(3)^2+(4*x^2+8*x+4)*log(3)+2*x^3+5*x^2+5*x+2)*exp(x)*log(-2*log(3)^2+(-4*x-4)*log(3)-2
*x^2-3*x-2)+((2*x^2+2*x)*log(3)^2+(4*x^3+8*x^2+4*x)*log(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*log(log(-2*log(3)^2+
(-4*x-4)*log(3)-2*x^2-3*x-2)+x)*log(log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3*x-2)+x)^2)+(4*x*log(3)^2+(8*x^
2+16*x)*log(3)+4*x^3+14*x^2+10*x)*exp(x))/((2*log(3)^2+(4*x+4)*log(3)+2*x^2+3*x+2)*log(-2*log(3)^2+(-4*x-4)*lo
g(3)-2*x^2-3*x-2)+2*x*log(3)^2+(4*x^2+4*x)*log(3)+2*x^3+3*x^2+2*x)/log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3
*x-2)+x),x, algorithm="fricas")
[Out]
x*e^x*log(log(x + log(-2*x^2 - 4*(x + 1)*log(3) - 2*log(3)^2 - 3*x - 2))^2)
________________________________________________________________________________________
giac [A] time = 67.41, size = 36, normalized size = 1.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((2*x+2)*log(3)^2+(4*x^2+8*x+4)*log(3)+2*x^3+5*x^2+5*x+2)*exp(x)*log(-2*log(3)^2+(-4*x-4)*log(3)-2
*x^2-3*x-2)+((2*x^2+2*x)*log(3)^2+(4*x^3+8*x^2+4*x)*log(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*log(log(-2*log(3)^2+
(-4*x-4)*log(3)-2*x^2-3*x-2)+x)*log(log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3*x-2)+x)^2)+(4*x*log(3)^2+(8*x^
2+16*x)*log(3)+4*x^3+14*x^2+10*x)*exp(x))/((2*log(3)^2+(4*x+4)*log(3)+2*x^2+3*x+2)*log(-2*log(3)^2+(-4*x-4)*lo
g(3)-2*x^2-3*x-2)+2*x*log(3)^2+(4*x^2+4*x)*log(3)+2*x^3+3*x^2+2*x)/log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3
*x-2)+x),x, algorithm="giac")
[Out]
x*e^x*log(log(x + log(-2*x^2 - 4*x*log(3) - 2*log(3)^2 - 3*x - 4*log(3) - 2))^2)
________________________________________________________________________________________
maple [C] time = 0.33, size = 216, normalized size = 8.64
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((((2*x+2)*ln(3)^2+(4*x^2+8*x+4)*ln(3)+2*x^3+5*x^2+5*x+2)*exp(x)*ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)
+((2*x^2+2*x)*ln(3)^2+(4*x^3+8*x^2+4*x)*ln(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2
*x^2-3*x-2)+x)*ln(ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x)^2)+(4*x*ln(3)^2+(8*x^2+16*x)*ln(3)+4*x^3+14*
x^2+10*x)*exp(x))/((2*ln(3)^2+(4*x+4)*ln(3)+2*x^2+3*x+2)*ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+2*x*ln(3)^2
+(4*x^2+4*x)*ln(3)+2*x^3+3*x^2+2*x)/ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x),x,method=_RETURNVERBOSE)
[Out]
2*x*exp(x)*ln(ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x))-1/2*I*Pi*csgn(I*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)
-2*x^2-3*x-2)+x)^2)*(csgn(I*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x))^2-2*csgn(I*ln(ln(-2*ln(3)^2+(-4*x
-4)*ln(3)-2*x^2-3*x-2)+x)^2)*csgn(I*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x))+csgn(I*ln(ln(-2*ln(3)^2+(
-4*x-4)*ln(3)-2*x^2-3*x-2)+x)^2)^2)*x*exp(x)
________________________________________________________________________________________
maxima [A] time = 0.62, size = 36, normalized size = 1.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((2*x+2)*log(3)^2+(4*x^2+8*x+4)*log(3)+2*x^3+5*x^2+5*x+2)*exp(x)*log(-2*log(3)^2+(-4*x-4)*log(3)-2
*x^2-3*x-2)+((2*x^2+2*x)*log(3)^2+(4*x^3+8*x^2+4*x)*log(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*log(log(-2*log(3)^2+
(-4*x-4)*log(3)-2*x^2-3*x-2)+x)*log(log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3*x-2)+x)^2)+(4*x*log(3)^2+(8*x^
2+16*x)*log(3)+4*x^3+14*x^2+10*x)*exp(x))/((2*log(3)^2+(4*x+4)*log(3)+2*x^2+3*x+2)*log(-2*log(3)^2+(-4*x-4)*lo
g(3)-2*x^2-3*x-2)+2*x*log(3)^2+(4*x^2+4*x)*log(3)+2*x^3+3*x^2+2*x)/log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3
*x-2)+x),x, algorithm="maxima")
[Out]
2*x*e^x*log(log(x + log(-2*x^2 - x*(4*log(3) + 3) - 2*log(3)^2 - 4*log(3) - 2)))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x)*(10*x + log(3)*(16*x + 8*x^2) + 4*x*log(3)^2 + 14*x^2 + 4*x^3) + log(log(x + log(- 3*x - log(3)*(4
*x + 4) - 2*log(3)^2 - 2*x^2 - 2))^2)*log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(exp(x)*
(2*x + log(3)*(4*x + 8*x^2 + 4*x^3) + log(3)^2*(2*x + 2*x^2) + 5*x^2 + 5*x^3 + 2*x^4) + log(- 3*x - log(3)*(4*
x + 4) - 2*log(3)^2 - 2*x^2 - 2)*exp(x)*(5*x + log(3)*(8*x + 4*x^2 + 4) + log(3)^2*(2*x + 2) + 5*x^2 + 2*x^3 +
2)))/(log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(2*x + log(- 3*x - log(3)*(4*x + 4) - 2
*log(3)^2 - 2*x^2 - 2)*(3*x + log(3)*(4*x + 4) + 2*log(3)^2 + 2*x^2 + 2) + log(3)*(4*x + 4*x^2) + 2*x*log(3)^2
+ 3*x^2 + 2*x^3)),x)
[Out]
int((exp(x)*(10*x + log(3)*(16*x + 8*x^2) + 4*x*log(3)^2 + 14*x^2 + 4*x^3) + log(log(x + log(- 3*x - log(3)*(4
*x + 4) - 2*log(3)^2 - 2*x^2 - 2))^2)*log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(exp(x)*
(2*x + log(3)*(4*x + 8*x^2 + 4*x^3) + log(3)^2*(2*x + 2*x^2) + 5*x^2 + 5*x^3 + 2*x^4) + log(- 3*x - log(3)*(4*
x + 4) - 2*log(3)^2 - 2*x^2 - 2)*exp(x)*(5*x + log(3)*(8*x + 4*x^2 + 4) + log(3)^2*(2*x + 2) + 5*x^2 + 2*x^3 +
2)))/(log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(2*x + log(- 3*x - log(3)*(4*x + 4) - 2
*log(3)^2 - 2*x^2 - 2)*(3*x + log(3)*(4*x + 4) + 2*log(3)^2 + 2*x^2 + 2) + log(3)*(4*x + 4*x^2) + 2*x*log(3)^2
+ 3*x^2 + 2*x^3)), x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((2*x+2)*ln(3)**2+(4*x**2+8*x+4)*ln(3)+2*x**3+5*x**2+5*x+2)*exp(x)*ln(-2*ln(3)**2+(-4*x-4)*ln(3)-2
*x**2-3*x-2)+((2*x**2+2*x)*ln(3)**2+(4*x**3+8*x**2+4*x)*ln(3)+2*x**4+5*x**3+5*x**2+2*x)*exp(x))*ln(ln(-2*ln(3)
**2+(-4*x-4)*ln(3)-2*x**2-3*x-2)+x)*ln(ln(ln(-2*ln(3)**2+(-4*x-4)*ln(3)-2*x**2-3*x-2)+x)**2)+(4*x*ln(3)**2+(8*
x**2+16*x)*ln(3)+4*x**3+14*x**2+10*x)*exp(x))/((2*ln(3)**2+(4*x+4)*ln(3)+2*x**2+3*x+2)*ln(-2*ln(3)**2+(-4*x-4)
*ln(3)-2*x**2-3*x-2)+2*x*ln(3)**2+(4*x**2+4*x)*ln(3)+2*x**3+3*x**2+2*x)/ln(ln(-2*ln(3)**2+(-4*x-4)*ln(3)-2*x**
2-3*x-2)+x),x)
[Out]
Timed out
________________________________________________________________________________________