3.69.2 ex(10x+14x2+4x3+(16x+8x2)log(3)+4xlog2(3))+(ex(2x+5x2+5x3+2x4+(4x+8x2+4x3)log(3)+(2x+2x2)log2(3))+ex(2+5x+5x2+2x3+(4+8x+4x2)log(3)+(2+2x)log2(3))log(23x2x2+(44x)log(3)2log2(3)))log(x+log(23x2x2+(44x)log(3)2log2(3)))log(log2(x+log(23x2x2+(44x)log(3)2log2(3))))(2x+3x2+2x3+(4x+4x2)log(3)+2xlog2(3)+(2+3x+2x2+(4+4x)log(3)+2log2(3))log(23x2x2+(44x)log(3)2log2(3)))log(x+log(23x2x2+(44x)log(3)2log2(3)))dx

Optimal. Leaf size=25 3+exxlog(log2(x+log(x2(1+x+log(3))2)))

________________________________________________________________________________________

Rubi [F]  time = 15.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex(10x+14x2+4x3+(16x+8x2)log(3)+4xlog2(3))+(ex(2x+5x2+5x3+2x4+(4x+8x2+4x3)log(3)+(2x+2x2)log2(3))+ex(2+5x+5x2+2x3+(4+8x+4x2)log(3)+(2+2x)log2(3))log(23x2x2+(44x)log(3)2log2(3)))log(x+log(23x2x2+(44x)log(3)2log2(3)))log(log2(x+log(23x2x2+(44x)log(3)2log2(3))))(2x+3x2+2x3+(4x+4x2)log(3)+2xlog2(3)+(2+3x+2x2+(4+4x)log(3)+2log2(3))log(23x2x2+(44x)log(3)2log2(3)))log(x+log(23x2x2+(44x)log(3)2log2(3)))dx

Verification is not applicable to the result.

[In]

Int[(E^x*(10*x + 14*x^2 + 4*x^3 + (16*x + 8*x^2)*Log[3] + 4*x*Log[3]^2) + (E^x*(2*x + 5*x^2 + 5*x^3 + 2*x^4 +
(4*x + 8*x^2 + 4*x^3)*Log[3] + (2*x + 2*x^2)*Log[3]^2) + E^x*(2 + 5*x + 5*x^2 + 2*x^3 + (4 + 8*x + 4*x^2)*Log[
3] + (2 + 2*x)*Log[3]^2)*Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x - 2*x^2
+ (-4 - 4*x)*Log[3] - 2*Log[3]^2]]*Log[Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2]]^2])/((2
*x + 3*x^2 + 2*x^3 + (4*x + 4*x^2)*Log[3] + 2*x*Log[3]^2 + (2 + 3*x + 2*x^2 + (4 + 4*x)*Log[3] + 2*Log[3]^2)*L
og[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Lo
g[3]^2]]),x]

[Out]

4*Defer[Int][E^x/((x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2
 - x*(3 + Log[81])]]), x] + 2*Defer[Int][(E^x*x)/((x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x
 + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]), x] - 2*(3 + Log[81])*(1 + (I*(3 + Log[81]))/Sqrt[7 + 16
*Log[3]^2 - Log[81]^2 + Log[6561]])*Defer[Int][E^x/((3 + 4*x + Log[81] - I*Sqrt[7 + 16*Log[3]^2 + 2*Log[81] -
Log[81]^2])*(x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(
3 + Log[81])]]), x] - ((32*I)*(1 + Log[3]^2 + Log[9])*Defer[Int][E^x/((-3 - 4*x - Log[81] + I*Sqrt[7 + 16*Log[
3]^2 + 2*Log[81] - Log[81]^2])*(x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(
1 + Log[3])^2 - x*(3 + Log[81])]]), x])/Sqrt[7 + 16*Log[3]^2 - Log[81]^2 + Log[6561]] - ((32*I)*(1 + Log[3]^2
+ Log[9])*Defer[Int][E^x/((3 + 4*x + Log[81] + I*Sqrt[7 + 16*Log[3]^2 + 2*Log[81] - Log[81]^2])*(x + Log[-2*x^
2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]), x])/Sqrt[
7 + 16*Log[3]^2 - Log[81]^2 + Log[6561]] - 2*(3 + Log[81])*(1 - (I*(3 + Log[81]))/Sqrt[7 + 16*Log[3]^2 - Log[8
1]^2 + Log[6561]])*Defer[Int][E^x/((3 + 4*x + Log[81] + I*Sqrt[7 + 16*Log[3]^2 + 2*Log[81] - Log[81]^2])*(x +
Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])])*Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]),
x] + Defer[Int][E^x*Log[Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]^2], x] + Defer[Int][E^x*x*Lo
g[Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]^2], x]

Rubi steps

integral=ex(10x+14x2+4x3+(16x+8x2)log(3)+4xlog2(3))+(ex(2x+5x2+5x3+2x4+(4x+8x2+4x3)log(3)+(2x+2x2)log2(3))+ex(2+5x+5x2+2x3+(4+8x+4x2)log(3)+(2+2x)log2(3))log(23x2x2+(44x)log(3)2log2(3)))log(x+log(23x2x2+(44x)log(3)2log2(3)))log(log2(x+log(23x2x2+(44x)log(3)2log2(3))))(3x2+2x3+(4x+4x2)log(3)+x(2+2log2(3))+(2+3x+2x2+(4+4x)log(3)+2log2(3))log(23x2x2+(44x)log(3)2log2(3)))log(x+log(23x2x2+(44x)log(3)2log2(3)))dx=ex(2x(5+2x2+8log(3)+2log2(3)+x(7+log(81)))(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))+(1+x)log(log2(x+log(2x22(1+log(3))2x(3+log(81))))))dx=(2exx(5+2x2+8log(3)+2log2(3)+x(7+log(81)))(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))+ex(1+x)log(log2(x+log(2x22(1+log(3))2x(3+log(81))))))dx=2exx(5+2x2+8log(3)+2log2(3)+x(7+log(81)))(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+ex(1+x)log(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx=2(2ex(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))+exx(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))+ex(44log2(3)x(3+log(81))log(6561))(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81)))))dx+(exlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))+exxlog(log2(x+log(2x22(1+log(3))2x(3+log(81))))))dx=2exx(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+2ex(44log2(3)x(3+log(81))log(6561))(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+4ex(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+exlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx+exxlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx=2(4ex(1+log2(3)+log(9))(22x22log2(3)log(81)x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))+exx(3log(81))(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81)))))dx+2exx(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+4ex(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+exlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx+exxlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx=2exx(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+4ex(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+(8(1+log2(3)+log(9)))ex(22x22log2(3)log(81)x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx(2(3+log(81)))exx(2+2x2+2log2(3)+log(81)+x(3+log(81)))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+exlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx+exxlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx=2exx(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+4ex(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))dx+(8(1+log2(3)+log(9)))(4iex7+16log2(3)+2log(81)log2(81)(34xlog(81)+i7+16log2(3)+2log(81)log2(81))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))4iex7+16log2(3)+2log(81)log2(81)(3+4x+log(81)+i7+16log2(3)+2log(81)log2(81))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81)))))dx(2(3+log(81)))(ex(1i(3+log(81))7+16log2(3)log2(81)+log(6561))(3+4x+log(81)+i7+16log2(3)+2log(81)log2(81))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81))))+ex(1+i(3+log(81))7+16log2(3)log2(81)+log(6561))(3+4x+log(81)i7+16log2(3)+2log(81)log2(81))(x+log(2x22(1+log(3))2x(3+log(81))))log(x+log(2x22(1+log(3))2x(3+log(81)))))dx+exlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx+exxlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 33, normalized size = 1.32 exxlog(log2(x+log(2x22(1+log(3))2x(3+log(81)))))

Antiderivative was successfully verified.

[In]

Integrate[(E^x*(10*x + 14*x^2 + 4*x^3 + (16*x + 8*x^2)*Log[3] + 4*x*Log[3]^2) + (E^x*(2*x + 5*x^2 + 5*x^3 + 2*
x^4 + (4*x + 8*x^2 + 4*x^3)*Log[3] + (2*x + 2*x^2)*Log[3]^2) + E^x*(2 + 5*x + 5*x^2 + 2*x^3 + (4 + 8*x + 4*x^2
)*Log[3] + (2 + 2*x)*Log[3]^2)*Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x -
2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2]]*Log[Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2]]^2
])/((2*x + 3*x^2 + 2*x^3 + (4*x + 4*x^2)*Log[3] + 2*x*Log[3]^2 + (2 + 3*x + 2*x^2 + (4 + 4*x)*Log[3] + 2*Log[3
]^2)*Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3] - 2*Log[3]^2])*Log[x + Log[-2 - 3*x - 2*x^2 + (-4 - 4*x)*Log[3]
- 2*Log[3]^2]]),x]

[Out]

E^x*x*Log[Log[x + Log[-2*x^2 - 2*(1 + Log[3])^2 - x*(3 + Log[81])]]^2]

________________________________________________________________________________________

fricas [A]  time = 0.67, size = 34, normalized size = 1.36 xexlog(log(x+log(2x24(x+1)log(3)2log(3)23x2))2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((2*x+2)*log(3)^2+(4*x^2+8*x+4)*log(3)+2*x^3+5*x^2+5*x+2)*exp(x)*log(-2*log(3)^2+(-4*x-4)*log(3)-2
*x^2-3*x-2)+((2*x^2+2*x)*log(3)^2+(4*x^3+8*x^2+4*x)*log(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*log(log(-2*log(3)^2+
(-4*x-4)*log(3)-2*x^2-3*x-2)+x)*log(log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3*x-2)+x)^2)+(4*x*log(3)^2+(8*x^
2+16*x)*log(3)+4*x^3+14*x^2+10*x)*exp(x))/((2*log(3)^2+(4*x+4)*log(3)+2*x^2+3*x+2)*log(-2*log(3)^2+(-4*x-4)*lo
g(3)-2*x^2-3*x-2)+2*x*log(3)^2+(4*x^2+4*x)*log(3)+2*x^3+3*x^2+2*x)/log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3
*x-2)+x),x, algorithm="fricas")

[Out]

x*e^x*log(log(x + log(-2*x^2 - 4*(x + 1)*log(3) - 2*log(3)^2 - 3*x - 2))^2)

________________________________________________________________________________________

giac [A]  time = 67.41, size = 36, normalized size = 1.44 xexlog(log(x+log(2x24xlog(3)2log(3)23x4log(3)2))2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((2*x+2)*log(3)^2+(4*x^2+8*x+4)*log(3)+2*x^3+5*x^2+5*x+2)*exp(x)*log(-2*log(3)^2+(-4*x-4)*log(3)-2
*x^2-3*x-2)+((2*x^2+2*x)*log(3)^2+(4*x^3+8*x^2+4*x)*log(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*log(log(-2*log(3)^2+
(-4*x-4)*log(3)-2*x^2-3*x-2)+x)*log(log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3*x-2)+x)^2)+(4*x*log(3)^2+(8*x^
2+16*x)*log(3)+4*x^3+14*x^2+10*x)*exp(x))/((2*log(3)^2+(4*x+4)*log(3)+2*x^2+3*x+2)*log(-2*log(3)^2+(-4*x-4)*lo
g(3)-2*x^2-3*x-2)+2*x*log(3)^2+(4*x^2+4*x)*log(3)+2*x^3+3*x^2+2*x)/log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3
*x-2)+x),x, algorithm="giac")

[Out]

x*e^x*log(log(x + log(-2*x^2 - 4*x*log(3) - 2*log(3)^2 - 3*x - 4*log(3) - 2))^2)

________________________________________________________________________________________

maple [C]  time = 0.33, size = 216, normalized size = 8.64




method result size



risch 2xexln(ln(ln(2ln(3)2+(4x4)ln(3)2x23x2)+x))iπcsgn(iln(ln(2ln(3)2+(4x4)ln(3)2x23x2)+x)2)(csgn(iln(ln(2ln(3)2+(4x4)ln(3)2x23x2)+x))22csgn(iln(ln(2ln(3)2+(4x4)ln(3)2x23x2)+x)2)csgn(iln(ln(2ln(3)2+(4x4)ln(3)2x23x2)+x))+csgn(iln(ln(2ln(3)2+(4x4)ln(3)2x23x2)+x)2)2)xex2 216



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((2*x+2)*ln(3)^2+(4*x^2+8*x+4)*ln(3)+2*x^3+5*x^2+5*x+2)*exp(x)*ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)
+((2*x^2+2*x)*ln(3)^2+(4*x^3+8*x^2+4*x)*ln(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2
*x^2-3*x-2)+x)*ln(ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x)^2)+(4*x*ln(3)^2+(8*x^2+16*x)*ln(3)+4*x^3+14*
x^2+10*x)*exp(x))/((2*ln(3)^2+(4*x+4)*ln(3)+2*x^2+3*x+2)*ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+2*x*ln(3)^2
+(4*x^2+4*x)*ln(3)+2*x^3+3*x^2+2*x)/ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x),x,method=_RETURNVERBOSE)

[Out]

2*x*exp(x)*ln(ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x))-1/2*I*Pi*csgn(I*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)
-2*x^2-3*x-2)+x)^2)*(csgn(I*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x))^2-2*csgn(I*ln(ln(-2*ln(3)^2+(-4*x
-4)*ln(3)-2*x^2-3*x-2)+x)^2)*csgn(I*ln(ln(-2*ln(3)^2+(-4*x-4)*ln(3)-2*x^2-3*x-2)+x))+csgn(I*ln(ln(-2*ln(3)^2+(
-4*x-4)*ln(3)-2*x^2-3*x-2)+x)^2)^2)*x*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.62, size = 36, normalized size = 1.44 2xexlog(log(x+log(2x2x(4log(3)+3)2log(3)24log(3)2)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((2*x+2)*log(3)^2+(4*x^2+8*x+4)*log(3)+2*x^3+5*x^2+5*x+2)*exp(x)*log(-2*log(3)^2+(-4*x-4)*log(3)-2
*x^2-3*x-2)+((2*x^2+2*x)*log(3)^2+(4*x^3+8*x^2+4*x)*log(3)+2*x^4+5*x^3+5*x^2+2*x)*exp(x))*log(log(-2*log(3)^2+
(-4*x-4)*log(3)-2*x^2-3*x-2)+x)*log(log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3*x-2)+x)^2)+(4*x*log(3)^2+(8*x^
2+16*x)*log(3)+4*x^3+14*x^2+10*x)*exp(x))/((2*log(3)^2+(4*x+4)*log(3)+2*x^2+3*x+2)*log(-2*log(3)^2+(-4*x-4)*lo
g(3)-2*x^2-3*x-2)+2*x*log(3)^2+(4*x^2+4*x)*log(3)+2*x^3+3*x^2+2*x)/log(log(-2*log(3)^2+(-4*x-4)*log(3)-2*x^2-3
*x-2)+x),x, algorithm="maxima")

[Out]

2*x*e^x*log(log(x + log(-2*x^2 - x*(4*log(3) + 3) - 2*log(3)^2 - 4*log(3) - 2)))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 ex(10x+ln(3)(8x2+16x)+4xln(3)2+14x2+4x3)+ln(ln(x+ln(3xln(3)(4x+4)2ln(3)22x22))2)ln(x+ln(3xln(3)(4x+4)2ln(3)22x22))(ex(2x+ln(3)(4x3+8x2+4x)+ln(3)2(2x2+2x)+5x2+5x3+2x4)+ln(3xln(3)(4x+4)2ln(3)22x22)ex(5x+ln(3)(4x2+8x+4)+ln(3)2(2x+2)+5x2+2x3+2))ln(x+ln(3xln(3)(4x+4)2ln(3)22x22))(2x+ln(3xln(3)(4x+4)2ln(3)22x22)(3x+ln(3)(4x+4)+2ln(3)2+2x2+2)+ln(3)(4x2+4x)+2xln(3)2+3x2+2x3)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(10*x + log(3)*(16*x + 8*x^2) + 4*x*log(3)^2 + 14*x^2 + 4*x^3) + log(log(x + log(- 3*x - log(3)*(4
*x + 4) - 2*log(3)^2 - 2*x^2 - 2))^2)*log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(exp(x)*
(2*x + log(3)*(4*x + 8*x^2 + 4*x^3) + log(3)^2*(2*x + 2*x^2) + 5*x^2 + 5*x^3 + 2*x^4) + log(- 3*x - log(3)*(4*
x + 4) - 2*log(3)^2 - 2*x^2 - 2)*exp(x)*(5*x + log(3)*(8*x + 4*x^2 + 4) + log(3)^2*(2*x + 2) + 5*x^2 + 2*x^3 +
 2)))/(log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(2*x + log(- 3*x - log(3)*(4*x + 4) - 2
*log(3)^2 - 2*x^2 - 2)*(3*x + log(3)*(4*x + 4) + 2*log(3)^2 + 2*x^2 + 2) + log(3)*(4*x + 4*x^2) + 2*x*log(3)^2
 + 3*x^2 + 2*x^3)),x)

[Out]

int((exp(x)*(10*x + log(3)*(16*x + 8*x^2) + 4*x*log(3)^2 + 14*x^2 + 4*x^3) + log(log(x + log(- 3*x - log(3)*(4
*x + 4) - 2*log(3)^2 - 2*x^2 - 2))^2)*log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(exp(x)*
(2*x + log(3)*(4*x + 8*x^2 + 4*x^3) + log(3)^2*(2*x + 2*x^2) + 5*x^2 + 5*x^3 + 2*x^4) + log(- 3*x - log(3)*(4*
x + 4) - 2*log(3)^2 - 2*x^2 - 2)*exp(x)*(5*x + log(3)*(8*x + 4*x^2 + 4) + log(3)^2*(2*x + 2) + 5*x^2 + 2*x^3 +
 2)))/(log(x + log(- 3*x - log(3)*(4*x + 4) - 2*log(3)^2 - 2*x^2 - 2))*(2*x + log(- 3*x - log(3)*(4*x + 4) - 2
*log(3)^2 - 2*x^2 - 2)*(3*x + log(3)*(4*x + 4) + 2*log(3)^2 + 2*x^2 + 2) + log(3)*(4*x + 4*x^2) + 2*x*log(3)^2
 + 3*x^2 + 2*x^3)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((2*x+2)*ln(3)**2+(4*x**2+8*x+4)*ln(3)+2*x**3+5*x**2+5*x+2)*exp(x)*ln(-2*ln(3)**2+(-4*x-4)*ln(3)-2
*x**2-3*x-2)+((2*x**2+2*x)*ln(3)**2+(4*x**3+8*x**2+4*x)*ln(3)+2*x**4+5*x**3+5*x**2+2*x)*exp(x))*ln(ln(-2*ln(3)
**2+(-4*x-4)*ln(3)-2*x**2-3*x-2)+x)*ln(ln(ln(-2*ln(3)**2+(-4*x-4)*ln(3)-2*x**2-3*x-2)+x)**2)+(4*x*ln(3)**2+(8*
x**2+16*x)*ln(3)+4*x**3+14*x**2+10*x)*exp(x))/((2*ln(3)**2+(4*x+4)*ln(3)+2*x**2+3*x+2)*ln(-2*ln(3)**2+(-4*x-4)
*ln(3)-2*x**2-3*x-2)+2*x*ln(3)**2+(4*x**2+4*x)*ln(3)+2*x**3+3*x**2+2*x)/ln(ln(-2*ln(3)**2+(-4*x-4)*ln(3)-2*x**
2-3*x-2)+x),x)

[Out]

Timed out

________________________________________________________________________________________