Optimal. Leaf size=28 \[ \frac {1}{4} e^{\frac {e^{x^2}+\frac {2 x}{3}-\log (x)}{2 x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 33, normalized size of antiderivative = 1.18, number of steps used = 2, number of rules used = 2, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {12, 6706} \begin {gather*} \frac {1}{4} e^{\frac {3 e^{x^2}+2 x}{6 x}} x^{\left .-\frac {1}{2}\right /x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{8} \int \frac {e^{\frac {3 e^{x^2}+2 x-3 \log (x)}{6 x}} \left (-1+e^{x^2} \left (-1+2 x^2\right )+\log (x)\right )}{x^2} \, dx\\ &=\frac {1}{4} e^{\frac {3 e^{x^2}+2 x}{6 x}} x^{\left .-\frac {1}{2}\right /x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.62, size = 31, normalized size = 1.11 \begin {gather*} \frac {1}{4} e^{\frac {1}{3}+\frac {e^{x^2}}{2 x}} x^{\left .-\frac {1}{2}\right /x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.45, size = 22, normalized size = 0.79 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {2 \, x + 3 \, e^{\left (x^{2}\right )} - 3 \, \log \relax (x)}{6 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {e^{\left (x^{2}\right )}}{2 \, x} - \frac {\log \relax (x)}{2 \, x} + \frac {1}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 23, normalized size = 0.82
method | result | size |
risch | \(\frac {{\mathrm e}^{-\frac {3 \ln \relax (x )-3 \,{\mathrm e}^{x^{2}}-2 x}{6 x}}}{4}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 21, normalized size = 0.75 \begin {gather*} \frac {1}{4} \, e^{\left (\frac {e^{\left (x^{2}\right )}}{2 \, x} - \frac {\log \relax (x)}{2 \, x} + \frac {1}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.13, size = 23, normalized size = 0.82 \begin {gather*} \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{x^2}}{2\,x}+\frac {1}{3}}}{4\,x^{\frac {1}{2\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 19, normalized size = 0.68 \begin {gather*} \frac {e^{\frac {\frac {x}{3} + \frac {e^{x^{2}}}{2} - \frac {\log {\relax (x )}}{2}}{x}}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________