3.69.12 e3ex2+2x3log(x)6x(1+ex2(1+2x2)+log(x))8x2dx

Optimal. Leaf size=28 14eex2+2x3log(x)2x

________________________________________________________________________________________

Rubi [A]  time = 0.54, antiderivative size = 33, normalized size of antiderivative = 1.18, number of steps used = 2, number of rules used = 2, integrand size = 48, number of rulesintegrand size = 0.042, Rules used = {12, 6706} 14e3ex2+2x6xx12/x

Antiderivative was successfully verified.

[In]

Int[(E^((3*E^x^2 + 2*x - 3*Log[x])/(6*x))*(-1 + E^x^2*(-1 + 2*x^2) + Log[x]))/(8*x^2),x]

[Out]

E^((3*E^x^2 + 2*x)/(6*x))/(4*x^(1/(2*x)))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=18e3ex2+2x3log(x)6x(1+ex2(1+2x2)+log(x))x2dx=14e3ex2+2x6xx12/x

________________________________________________________________________________________

Mathematica [A]  time = 0.62, size = 31, normalized size = 1.11 14e13+ex22xx12/x

Antiderivative was successfully verified.

[In]

Integrate[(E^((3*E^x^2 + 2*x - 3*Log[x])/(6*x))*(-1 + E^x^2*(-1 + 2*x^2) + Log[x]))/(8*x^2),x]

[Out]

E^(1/3 + E^x^2/(2*x))/(4*x^(1/(2*x)))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 22, normalized size = 0.79 14e(2x+3e(x2)3log(x)6x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*(log(x)+(2*x^2-1)*exp(x^2)-1)*exp(1/6*(-3*log(x)+3*exp(x^2)+2*x)/x)/x^2,x, algorithm="fricas")

[Out]

1/4*e^(1/6*(2*x + 3*e^(x^2) - 3*log(x))/x)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 21, normalized size = 0.75 14e(e(x2)2xlog(x)2x+13)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*(log(x)+(2*x^2-1)*exp(x^2)-1)*exp(1/6*(-3*log(x)+3*exp(x^2)+2*x)/x)/x^2,x, algorithm="giac")

[Out]

1/4*e^(1/2*e^(x^2)/x - 1/2*log(x)/x + 1/3)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 23, normalized size = 0.82




method result size



risch e3ln(x)3ex22x6x4 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/8*(ln(x)+(2*x^2-1)*exp(x^2)-1)*exp(1/6*(-3*ln(x)+3*exp(x^2)+2*x)/x)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/4*exp(-1/6*(3*ln(x)-3*exp(x^2)-2*x)/x)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 21, normalized size = 0.75 14e(e(x2)2xlog(x)2x+13)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*(log(x)+(2*x^2-1)*exp(x^2)-1)*exp(1/6*(-3*log(x)+3*exp(x^2)+2*x)/x)/x^2,x, algorithm="maxima")

[Out]

1/4*e^(1/2*e^(x^2)/x - 1/2*log(x)/x + 1/3)

________________________________________________________________________________________

mupad [B]  time = 4.13, size = 23, normalized size = 0.82 eex22x+134x12x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((x/3 + exp(x^2)/2 - log(x)/2)/x)*(log(x) + exp(x^2)*(2*x^2 - 1) - 1))/(8*x^2),x)

[Out]

exp(exp(x^2)/(2*x) + 1/3)/(4*x^(1/(2*x)))

________________________________________________________________________________________

sympy [A]  time = 0.51, size = 19, normalized size = 0.68 ex3+ex22log(x)2x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/8*(ln(x)+(2*x**2-1)*exp(x**2)-1)*exp(1/6*(-3*ln(x)+3*exp(x**2)+2*x)/x)/x**2,x)

[Out]

exp((x/3 + exp(x**2)/2 - log(x)/2)/x)/4

________________________________________________________________________________________