3.69.11 39249x+9x3log2(3)+e2x(7281x+18x2)log2(3)+ex((336210x+42x2)log(3)+(7245x+9x2)log2(3))196x+49x2+9x4log2(3)+e2x(36x+9x2)log2(3)+ex((168x+42x2)log(3)+(36x+9x2)log2(3))dx

Optimal. Leaf size=31 log(x(4x)(ex+(ex+73log(3))2)x2)

________________________________________________________________________________________

Rubi [F]  time = 28.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 39249x+9x3log2(3)+e2x(7281x+18x2)log2(3)+ex((336210x+42x2)log(3)+(7245x+9x2)log2(3))196x+49x2+9x4log2(3)+e2x(36x+9x2)log2(3)+ex((168x+42x2)log(3)+(36x+9x2)log2(3))dx

Verification is not applicable to the result.

[In]

Int[(392 - 49*x + 9*x^3*Log[3]^2 + E^(2*x)*(72 - 81*x + 18*x^2)*Log[3]^2 + E^x*((336 - 210*x + 42*x^2)*Log[3]
+ (72 - 45*x + 9*x^2)*Log[3]^2))/(-196*x + 49*x^2 + 9*x^4*Log[3]^2 + E^(2*x)*(-36*x + 9*x^2)*Log[3]^2 + E^x*((
-168*x + 42*x^2)*Log[3] + (-36*x + 9*x^2)*Log[3]^2)),x]

[Out]

2*x + Log[4 - x] - 2*Log[x] + 1152*Log[3]^2*Defer[Int][(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^
2 - 9*x^3*Log[3]^2 + 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))
^(-1), x] + 3136*Defer[Int][1/((4 - x)*(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Log[3]
^2 + 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))), x] + 5760*Log
[3]^2*Defer[Int][1/((4 - x)*(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Log[3]^2 + 168*E^
x*Log[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))), x] - 32*(49 + 54*Log[3]^
2)*Defer[Int][1/((4 - x)*(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Log[3]^2 + 168*E^x*L
og[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))), x] + 1568*Defer[Int][1/((-4
 + x)*(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Log[3]^2 + 168*E^x*Log[3]*(1 + Log[27]^
2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))), x] + 4608*Log[3]^2*Defer[Int][1/((-4 + x)*(196
 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Log[3]^2 + 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[
3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))), x] + 288*Log[3]^2*Defer[Int][x/(196 - 49*x + 36*E^(2*x)*
Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Log[3]^2 + 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3
]*(1 + Log[27]^2/(42*Log[3]))), x] + 72*Log[3]^2*Defer[Int][x^2/(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*
x*Log[3]^2 - 9*x^3*Log[3]^2 + 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*
Log[3]))), x] + 18*Log[3]^2*Defer[Int][x^3/(196 - 49*x + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9*x^3*Lo
g[3]^2 + 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) - 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3]))), x] + 784*D
efer[Int][(-196 + 49*x - 36*E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log[3]^2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log
[27]^2/(42*Log[3])) + 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))^(-1), x] + 1440*Log[3]^2*Defer[Int][(-196 +
 49*x - 36*E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log[3]^2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3]
)) + 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))^(-1), x] - 8*(49 + 54*Log[3]^2)*Defer[Int][(-196 + 49*x - 36
*E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log[3]^2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) + 42*E^
x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))^(-1), x] + 4*(42*Log[3] + Log[27]^2)*Defer[Int][E^x/(-196 + 49*x - 36*
E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log[3]^2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) + 42*E^x
*x*Log[3]*(1 + Log[27]^2/(42*Log[3]))), x] + 360*Log[3]^2*Defer[Int][x/(-196 + 49*x - 36*E^(2*x)*Log[3]^2 + 9*
E^(2*x)*x*Log[3]^2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) + 42*E^x*x*Log[3]*(1 + Log[27
]^2/(42*Log[3]))), x] - 2*(49 + 54*Log[3]^2)*Defer[Int][x/(-196 + 49*x - 36*E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log
[3]^2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) + 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3
]))), x] - (42*Log[3] + Log[27]^2)*Defer[Int][(E^x*x)/(-196 + 49*x - 36*E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log[3]^
2 + 9*x^3*Log[3]^2 - 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) + 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3])))
, x] + 90*Log[3]^2*Defer[Int][x^2/(-196 + 49*x - 36*E^(2*x)*Log[3]^2 + 9*E^(2*x)*x*Log[3]^2 + 9*x^3*Log[3]^2 -
 168*E^x*Log[3]*(1 + Log[27]^2/(42*Log[3])) + 42*E^x*x*Log[3]*(1 + Log[27]^2/(42*Log[3]))), x]

Rubi steps

integral=392+49x9x3log2(3)9e2x(89x+2x2)log2(3)3ex(85x+x2)log(3)(14+log(27))x(19649x9e2x(4+x)log2(3)9x3log2(3)3ex(4+x)log(3)(14+log(27)))dx=(89x+2x2(4+x)x+1568+784x+90x3log2(3)18x4log2(3)98x2(1+54log2(3)49)672exlog(3)(1+log2(27)42log(3))+336exxlog(3)(1+log2(27)42log(3))42exx2log(3)(1+log2(27)42log(3))(4x)(19649x+36e2xlog2(3)9e2xxlog2(3)9x3log2(3)+168exlog(3)(1+log2(27)42log(3))42exxlog(3)(1+log2(27)42log(3))))dx=89x+2x2(4+x)xdx+1568+784x+90x3log2(3)18x4log2(3)98x2(1+54log2(3)49)672exlog(3)(1+log2(27)42log(3))+336exxlog(3)(1+log2(27)42log(3))42exx2log(3)(1+log2(27)42log(3))(4x)(19649x+36e2xlog2(3)9e2xxlog2(3)9x3log2(3)+168exlog(3)(1+log2(27)42log(3))42exxlog(3)(1+log2(27)42log(3)))dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [B]  time = 0.28, size = 77, normalized size = 2.48 2log(x)+log(19649x+168exlog(3)42exxlog(3)+36e2xlog2(3)9e2xxlog2(3)9x3log2(3)+12exlog(3)log(27)3exxlog(3)log(27))

Antiderivative was successfully verified.

[In]

Integrate[(392 - 49*x + 9*x^3*Log[3]^2 + E^(2*x)*(72 - 81*x + 18*x^2)*Log[3]^2 + E^x*((336 - 210*x + 42*x^2)*L
og[3] + (72 - 45*x + 9*x^2)*Log[3]^2))/(-196*x + 49*x^2 + 9*x^4*Log[3]^2 + E^(2*x)*(-36*x + 9*x^2)*Log[3]^2 +
E^x*((-168*x + 42*x^2)*Log[3] + (-36*x + 9*x^2)*Log[3]^2)),x]

[Out]

-2*Log[x] + Log[196 - 49*x + 168*E^x*Log[3] - 42*E^x*x*Log[3] + 36*E^(2*x)*Log[3]^2 - 9*E^(2*x)*x*Log[3]^2 - 9
*x^3*Log[3]^2 + 12*E^x*Log[3]*Log[27] - 3*E^x*x*Log[3]*Log[27]]

________________________________________________________________________________________

fricas [B]  time = 0.63, size = 64, normalized size = 2.06 log(x4)2log(x)+log(9x3log(3)2+9(x4)e(2x)log(3)2+3(3(x4)log(3)2+14(x4)log(3))ex+49x196x4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x^2-81*x+72)*log(3)^2*exp(x)^2+((9*x^2-45*x+72)*log(3)^2+(42*x^2-210*x+336)*log(3))*exp(x)+9*x^
3*log(3)^2-49*x+392)/((9*x^2-36*x)*log(3)^2*exp(x)^2+((9*x^2-36*x)*log(3)^2+(42*x^2-168*x)*log(3))*exp(x)+9*x^
4*log(3)^2+49*x^2-196*x),x, algorithm="fricas")

[Out]

log(x - 4) - 2*log(x) + log((9*x^3*log(3)^2 + 9*(x - 4)*e^(2*x)*log(3)^2 + 3*(3*(x - 4)*log(3)^2 + 14*(x - 4)*
log(3))*e^x + 49*x - 196)/(x - 4))

________________________________________________________________________________________

giac [B]  time = 0.40, size = 71, normalized size = 2.29 log(9x3log(3)2+9xe(2x)log(3)2+9xexlog(3)2+42xexlog(3)36e(2x)log(3)236exlog(3)2168exlog(3)+49x196)2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x^2-81*x+72)*log(3)^2*exp(x)^2+((9*x^2-45*x+72)*log(3)^2+(42*x^2-210*x+336)*log(3))*exp(x)+9*x^
3*log(3)^2-49*x+392)/((9*x^2-36*x)*log(3)^2*exp(x)^2+((9*x^2-36*x)*log(3)^2+(42*x^2-168*x)*log(3))*exp(x)+9*x^
4*log(3)^2+49*x^2-196*x),x, algorithm="giac")

[Out]

log(9*x^3*log(3)^2 + 9*x*e^(2*x)*log(3)^2 + 9*x*e^x*log(3)^2 + 42*x*e^x*log(3) - 36*e^(2*x)*log(3)^2 - 36*e^x*
log(3)^2 - 168*e^x*log(3) + 49*x - 196) - 2*log(x)

________________________________________________________________________________________

maple [A]  time = 0.14, size = 55, normalized size = 1.77




method result size



risch 2ln(x)+ln(x4)+ln(e2x+(3ln(3)+14)ex3ln(3)+9x3ln(3)2+49x1969ln(3)2(x4)) 55
norman 2ln(x)+ln(9xln(3)2e2x+9x3ln(3)236ln(3)2e2x+9xln(3)2ex36ln(3)2ex+42xln(3)ex168ln(3)ex+49x196) 72



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((18*x^2-81*x+72)*ln(3)^2*exp(x)^2+((9*x^2-45*x+72)*ln(3)^2+(42*x^2-210*x+336)*ln(3))*exp(x)+9*x^3*ln(3)^2
-49*x+392)/((9*x^2-36*x)*ln(3)^2*exp(x)^2+((9*x^2-36*x)*ln(3)^2+(42*x^2-168*x)*ln(3))*exp(x)+9*x^4*ln(3)^2+49*
x^2-196*x),x,method=_RETURNVERBOSE)

[Out]

-2*ln(x)+ln(x-4)+ln(exp(2*x)+1/3/ln(3)*(3*ln(3)+14)*exp(x)+1/9*(9*x^3*ln(3)^2+49*x-196)/ln(3)^2/(x-4))

________________________________________________________________________________________

maxima [B]  time = 0.55, size = 88, normalized size = 2.84 log(x4)2log(x)+log(9x3log(3)2+9(xlog(3)24log(3)2)e(2x)+3((3log(3)2+14log(3))x12log(3)256log(3))ex+49x1969(xlog(3)24log(3)2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x^2-81*x+72)*log(3)^2*exp(x)^2+((9*x^2-45*x+72)*log(3)^2+(42*x^2-210*x+336)*log(3))*exp(x)+9*x^
3*log(3)^2-49*x+392)/((9*x^2-36*x)*log(3)^2*exp(x)^2+((9*x^2-36*x)*log(3)^2+(42*x^2-168*x)*log(3))*exp(x)+9*x^
4*log(3)^2+49*x^2-196*x),x, algorithm="maxima")

[Out]

log(x - 4) - 2*log(x) + log(1/9*(9*x^3*log(3)^2 + 9*(x*log(3)^2 - 4*log(3)^2)*e^(2*x) + 3*((3*log(3)^2 + 14*lo
g(3))*x - 12*log(3)^2 - 56*log(3))*e^x + 49*x - 196)/(x*log(3)^2 - 4*log(3)^2))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 9x3ln(3)249x+ex(ln(3)(42x2210x+336)+ln(3)2(9x245x+72))+e2xln(3)2(18x281x+72)+392196x9x4ln(3)2+ex(ln(3)(168x42x2)+ln(3)2(36x9x2))49x2+e2xln(3)2(36x9x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(9*x^3*log(3)^2 - 49*x + exp(x)*(log(3)*(42*x^2 - 210*x + 336) + log(3)^2*(9*x^2 - 45*x + 72)) + exp(2*x)
*log(3)^2*(18*x^2 - 81*x + 72) + 392)/(196*x - 9*x^4*log(3)^2 + exp(x)*(log(3)*(168*x - 42*x^2) + log(3)^2*(36
*x - 9*x^2)) - 49*x^2 + exp(2*x)*log(3)^2*(36*x - 9*x^2)),x)

[Out]

-int((9*x^3*log(3)^2 - 49*x + exp(x)*(log(3)*(42*x^2 - 210*x + 336) + log(3)^2*(9*x^2 - 45*x + 72)) + exp(2*x)
*log(3)^2*(18*x^2 - 81*x + 72) + 392)/(196*x - 9*x^4*log(3)^2 + exp(x)*(log(3)*(168*x - 42*x^2) + log(3)^2*(36
*x - 9*x^2)) - 49*x^2 + exp(2*x)*log(3)^2*(36*x - 9*x^2)), x)

________________________________________________________________________________________

sympy [B]  time = 1.24, size = 61, normalized size = 1.97 2log(x)+log(x4)+log(e2x+(3log(3)+14)ex3log(3)+9x3log(3)2+49x1969xlog(3)236log(3)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((18*x**2-81*x+72)*ln(3)**2*exp(x)**2+((9*x**2-45*x+72)*ln(3)**2+(42*x**2-210*x+336)*ln(3))*exp(x)+9
*x**3*ln(3)**2-49*x+392)/((9*x**2-36*x)*ln(3)**2*exp(x)**2+((9*x**2-36*x)*ln(3)**2+(42*x**2-168*x)*ln(3))*exp(
x)+9*x**4*ln(3)**2+49*x**2-196*x),x)

[Out]

-2*log(x) + log(x - 4) + log(exp(2*x) + (3*log(3) + 14)*exp(x)/(3*log(3)) + (9*x**3*log(3)**2 + 49*x - 196)/(9
*x*log(3)**2 - 36*log(3)**2))

________________________________________________________________________________________