Optimal. Leaf size=29 \[ 9 \left (x-\frac {-x+x^2+3 \log \left (\frac {25 x}{4 e^4}\right )}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 66, normalized size of antiderivative = 2.28, number of steps used = 8, number of rules used = 7, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {14, 2305, 2304, 37, 2334, 12, 43} \begin {gather*} \frac {9 (x+3)^2 \left (-\log (x)+4-\log \left (\frac {25}{4}\right )\right )}{x^2}+\frac {81 \left (2 \left (2-\log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^2}-\frac {81 \left (-\log (x)+4-\log \left (\frac {25}{4}\right )\right )}{x^2}+9 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 37
Rule 43
Rule 2304
Rule 2305
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {54}{x^2}-\frac {162 \left (4 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^3}+\frac {54 (3+x) \left (-4 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )+\log (x)\right )}{x^3}\right ) \, dx\\ &=\frac {54}{x}+54 \int \frac {(3+x) \left (-4 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )+\log (x)\right )}{x^3} \, dx-162 \int \frac {\left (4 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^3} \, dx\\ &=\frac {54}{x}+\frac {81 \left (2 \left (2-\log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^2}+\frac {9 (3+x)^2 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}-54 \int -\frac {(3+x)^2}{6 x^3} \, dx+162 \int \frac {4 \left (1-\frac {1}{2} \log \left (\frac {5}{2}\right )\right )-\log (x)}{x^3} \, dx\\ &=\frac {81}{2 x^2}+\frac {54}{x}+\frac {81 \left (2 \left (2-\log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^2}-\frac {81 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}+\frac {9 (3+x)^2 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}+9 \int \frac {(3+x)^2}{x^3} \, dx\\ &=\frac {81}{2 x^2}+\frac {54}{x}+\frac {81 \left (2 \left (2-\log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^2}-\frac {81 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}+\frac {9 (3+x)^2 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}+9 \int \left (\frac {9}{x^3}+\frac {6}{x^2}+\frac {1}{x}\right ) \, dx\\ &=\frac {81 \left (2 \left (2-\log \left (\frac {5}{2}\right )\right )-\log (x)\right )^2}{x^2}-\frac {81 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}+\frac {9 (3+x)^2 \left (4-\log \left (\frac {25}{4}\right )-\log (x)\right )}{x^2}+9 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 55, normalized size = 1.90 \begin {gather*} \frac {27 \left (96+16 x-21 \log \left (\frac {25}{4}\right )-4 x \log \left (\frac {25}{4}\right )+3 \left (-9+\log \left (\frac {625}{16}\right )\right ) \log \left (\frac {25 x}{4}\right )+\log (x) \left (-21-4 x+6 \log \left (\frac {25 x}{4}\right )\right )\right )}{2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 25, normalized size = 0.86 \begin {gather*} -\frac {27 \, {\left (2 \, x \log \left (\frac {25}{4} \, x e^{\left (-4\right )}\right ) - 3 \, \log \left (\frac {25}{4} \, x e^{\left (-4\right )}\right )^{2}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.10 \begin {gather*} -\frac {54 \, {\left (x + 12\right )} \log \left (\frac {25}{4} \, x\right )}{x^{2}} + \frac {81 \, \log \left (\frac {25}{4} \, x\right )^{2}}{x^{2}} + \frac {216 \, {\left (x + 6\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 26, normalized size = 0.90
method | result | size |
risch | \(\frac {81 \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )^{2}}{x^{2}}-\frac {54 \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )}{x}\) | \(26\) |
norman | \(\frac {81 \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )^{2}-54 \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right ) x}{x^{2}}\) | \(29\) |
derivativedivides | \(\frac {25 \,{\mathrm e}^{-8} \left (216 \,{\mathrm e}^{4} \left (-\frac {4 \,{\mathrm e}^{4} \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )}{25 x}-\frac {4 \,{\mathrm e}^{4}}{25 x}\right )+\frac {864 \,{\mathrm e}^{8}}{25 x}+\frac {1296 \,{\mathrm e}^{8} \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )^{2}}{25 x^{2}}\right )}{16}\) | \(69\) |
default | \(\frac {25 \,{\mathrm e}^{-8} \left (216 \,{\mathrm e}^{4} \left (-\frac {4 \,{\mathrm e}^{4} \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )}{25 x}-\frac {4 \,{\mathrm e}^{4}}{25 x}\right )+\frac {864 \,{\mathrm e}^{8}}{25 x}+\frac {1296 \,{\mathrm e}^{8} \ln \left (\frac {25 x \,{\mathrm e}^{-4}}{4}\right )^{2}}{25 x^{2}}\right )}{16}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 53, normalized size = 1.83 \begin {gather*} -\frac {54 \, \log \left (\frac {25}{4} \, x e^{\left (-4\right )}\right )}{x} + \frac {81 \, {\left (2 \, \log \left (\frac {25}{4} \, x e^{\left (-4\right )}\right )^{2} + 2 \, \log \left (\frac {25}{4} \, x e^{\left (-4\right )}\right ) + 1\right )}}{2 \, x^{2}} - \frac {81 \, \log \left (\frac {25}{4} \, x e^{\left (-4\right )}\right )}{x^{2}} - \frac {81}{2 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.22, size = 23, normalized size = 0.79 \begin {gather*} -\frac {27\,\ln \left (\frac {25\,x\,{\mathrm {e}}^{-4}}{4}\right )\,\left (2\,x-3\,\ln \left (\frac {25\,x\,{\mathrm {e}}^{-4}}{4}\right )\right )}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.00 \begin {gather*} - \frac {54 \log {\left (\frac {25 x}{4 e^{4}} \right )}}{x} + \frac {81 \log {\left (\frac {25 x}{4 e^{4}} \right )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________