3.69.16 54x+(162+54x)log(25x4e4)162log2(25x4e4)x3dx

Optimal. Leaf size=29 9(xx+x2+3log(25x4e4)x)2

________________________________________________________________________________________

Rubi [B]  time = 0.11, antiderivative size = 66, normalized size of antiderivative = 2.28, number of steps used = 8, number of rules used = 7, integrand size = 36, number of rulesintegrand size = 0.194, Rules used = {14, 2305, 2304, 37, 2334, 12, 43} 9(x+3)2(log(x)+4log(254))x2+81(2(2log(52))log(x))2x281(log(x)+4log(254))x2+9log(x)

Antiderivative was successfully verified.

[In]

Int[(-54*x + (162 + 54*x)*Log[(25*x)/(4*E^4)] - 162*Log[(25*x)/(4*E^4)]^2)/x^3,x]

[Out]

(81*(2*(2 - Log[5/2]) - Log[x])^2)/x^2 - (81*(4 - Log[25/4] - Log[x]))/x^2 + (9*(3 + x)^2*(4 - Log[25/4] - Log
[x]))/x^2 + 9*Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rubi steps

integral=(54x2162(4(112log(52))log(x))2x3+54(3+x)(4(112log(52))+log(x))x3)dx=54x+54(3+x)(4(112log(52))+log(x))x3dx162(4(112log(52))log(x))2x3dx=54x+81(2(2log(52))log(x))2x2+9(3+x)2(4log(254)log(x))x254(3+x)26x3dx+1624(112log(52))log(x)x3dx=812x2+54x+81(2(2log(52))log(x))2x281(4log(254)log(x))x2+9(3+x)2(4log(254)log(x))x2+9(3+x)2x3dx=812x2+54x+81(2(2log(52))log(x))2x281(4log(254)log(x))x2+9(3+x)2(4log(254)log(x))x2+9(9x3+6x2+1x)dx=81(2(2log(52))log(x))2x281(4log(254)log(x))x2+9(3+x)2(4log(254)log(x))x2+9log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 55, normalized size = 1.90 27(96+16x21log(254)4xlog(254)+3(9+log(62516))log(25x4)+log(x)(214x+6log(25x4)))2x2

Antiderivative was successfully verified.

[In]

Integrate[(-54*x + (162 + 54*x)*Log[(25*x)/(4*E^4)] - 162*Log[(25*x)/(4*E^4)]^2)/x^3,x]

[Out]

(27*(96 + 16*x - 21*Log[25/4] - 4*x*Log[25/4] + 3*(-9 + Log[625/16])*Log[(25*x)/4] + Log[x]*(-21 - 4*x + 6*Log
[(25*x)/4])))/(2*x^2)

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 25, normalized size = 0.86 27(2xlog(254xe(4))3log(254xe(4))2)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-162*log(25/4*x/exp(2)^2)^2+(54*x+162)*log(25/4*x/exp(2)^2)-54*x)/x^3,x, algorithm="fricas")

[Out]

-27*(2*x*log(25/4*x*e^(-4)) - 3*log(25/4*x*e^(-4))^2)/x^2

________________________________________________________________________________________

giac [A]  time = 0.14, size = 32, normalized size = 1.10 54(x+12)log(254x)x2+81log(254x)2x2+216(x+6)x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-162*log(25/4*x/exp(2)^2)^2+(54*x+162)*log(25/4*x/exp(2)^2)-54*x)/x^3,x, algorithm="giac")

[Out]

-54*(x + 12)*log(25/4*x)/x^2 + 81*log(25/4*x)^2/x^2 + 216*(x + 6)/x^2

________________________________________________________________________________________

maple [A]  time = 0.02, size = 26, normalized size = 0.90




method result size



risch 81ln(25xe44)2x254ln(25xe44)x 26
norman 81ln(25xe44)254ln(25xe44)xx2 29
derivativedivides 25e8(216e4(4e4ln(25xe44)25x4e425x)+864e825x+1296e8ln(25xe44)225x2)16 69
default 25e8(216e4(4e4ln(25xe44)25x4e425x)+864e825x+1296e8ln(25xe44)225x2)16 69



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-162*ln(25/4*x/exp(2)^2)^2+(54*x+162)*ln(25/4*x/exp(2)^2)-54*x)/x^3,x,method=_RETURNVERBOSE)

[Out]

81/x^2*ln(25/4*x*exp(-4))^2-54*ln(25/4*x*exp(-4))/x

________________________________________________________________________________________

maxima [B]  time = 0.35, size = 53, normalized size = 1.83 54log(254xe(4))x+81(2log(254xe(4))2+2log(254xe(4))+1)2x281log(254xe(4))x2812x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-162*log(25/4*x/exp(2)^2)^2+(54*x+162)*log(25/4*x/exp(2)^2)-54*x)/x^3,x, algorithm="maxima")

[Out]

-54*log(25/4*x*e^(-4))/x + 81/2*(2*log(25/4*x*e^(-4))^2 + 2*log(25/4*x*e^(-4)) + 1)/x^2 - 81*log(25/4*x*e^(-4)
)/x^2 - 81/2/x^2

________________________________________________________________________________________

mupad [B]  time = 4.22, size = 23, normalized size = 0.79 27ln(25xe44)(2x3ln(25xe44))x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(54*x + 162*log((25*x*exp(-4))/4)^2 - log((25*x*exp(-4))/4)*(54*x + 162))/x^3,x)

[Out]

-(27*log((25*x*exp(-4))/4)*(2*x - 3*log((25*x*exp(-4))/4)))/x^2

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 29, normalized size = 1.00 54log(25x4e4)x+81log(25x4e4)2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-162*ln(25/4*x/exp(2)**2)**2+(54*x+162)*ln(25/4*x/exp(2)**2)-54*x)/x**3,x)

[Out]

-54*log(25*x*exp(-4)/4)/x + 81*log(25*x*exp(-4)/4)**2/x**2

________________________________________________________________________________________