3.69.16
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 66, normalized size of antiderivative = 2.28,
number of steps used = 8, number of rules used = 7, integrand size = 36, = 0.194, Rules used =
{14, 2305, 2304, 37, 2334, 12, 43}
Antiderivative was successfully verified.
[In]
Int[(-54*x + (162 + 54*x)*Log[(25*x)/(4*E^4)] - 162*Log[(25*x)/(4*E^4)]^2)/x^3,x]
[Out]
(81*(2*(2 - Log[5/2]) - Log[x])^2)/x^2 - (81*(4 - Log[25/4] - Log[x]))/x^2 + (9*(3 + x)^2*(4 - Log[25/4] - Log
[x]))/x^2 + 9*Log[x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 14
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
Rule 37
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n +
1))/((b*c - a*d)*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2305
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
Rule 2334
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && !(EqQ[q, 1] && EqQ[m, -1])
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 55, normalized size = 1.90
Antiderivative was successfully verified.
[In]
Integrate[(-54*x + (162 + 54*x)*Log[(25*x)/(4*E^4)] - 162*Log[(25*x)/(4*E^4)]^2)/x^3,x]
[Out]
(27*(96 + 16*x - 21*Log[25/4] - 4*x*Log[25/4] + 3*(-9 + Log[625/16])*Log[(25*x)/4] + Log[x]*(-21 - 4*x + 6*Log
[(25*x)/4])))/(2*x^2)
________________________________________________________________________________________
fricas [A] time = 0.57, size = 25, normalized size = 0.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-162*log(25/4*x/exp(2)^2)^2+(54*x+162)*log(25/4*x/exp(2)^2)-54*x)/x^3,x, algorithm="fricas")
[Out]
-27*(2*x*log(25/4*x*e^(-4)) - 3*log(25/4*x*e^(-4))^2)/x^2
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-162*log(25/4*x/exp(2)^2)^2+(54*x+162)*log(25/4*x/exp(2)^2)-54*x)/x^3,x, algorithm="giac")
[Out]
-54*(x + 12)*log(25/4*x)/x^2 + 81*log(25/4*x)^2/x^2 + 216*(x + 6)/x^2
________________________________________________________________________________________
maple [A] time = 0.02, size = 26, normalized size = 0.90
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-162*ln(25/4*x/exp(2)^2)^2+(54*x+162)*ln(25/4*x/exp(2)^2)-54*x)/x^3,x,method=_RETURNVERBOSE)
[Out]
81/x^2*ln(25/4*x*exp(-4))^2-54*ln(25/4*x*exp(-4))/x
________________________________________________________________________________________
maxima [B] time = 0.35, size = 53, normalized size = 1.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-162*log(25/4*x/exp(2)^2)^2+(54*x+162)*log(25/4*x/exp(2)^2)-54*x)/x^3,x, algorithm="maxima")
[Out]
-54*log(25/4*x*e^(-4))/x + 81/2*(2*log(25/4*x*e^(-4))^2 + 2*log(25/4*x*e^(-4)) + 1)/x^2 - 81*log(25/4*x*e^(-4)
)/x^2 - 81/2/x^2
________________________________________________________________________________________
mupad [B] time = 4.22, size = 23, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(54*x + 162*log((25*x*exp(-4))/4)^2 - log((25*x*exp(-4))/4)*(54*x + 162))/x^3,x)
[Out]
-(27*log((25*x*exp(-4))/4)*(2*x - 3*log((25*x*exp(-4))/4)))/x^2
________________________________________________________________________________________
sympy [A] time = 0.15, size = 29, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-162*ln(25/4*x/exp(2)**2)**2+(54*x+162)*ln(25/4*x/exp(2)**2)-54*x)/x**3,x)
[Out]
-54*log(25*x*exp(-4)/4)/x + 81*log(25*x*exp(-4)/4)**2/x**2
________________________________________________________________________________________