3.69.17
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [A] time = 3.74, antiderivative size = 36, normalized size of antiderivative = 1.16,
number of steps used = 3, number of rules used = 3, integrand size = 293, = 0.010, Rules used
= {6688, 12, 6687}
Antiderivative was successfully verified.
[In]
Int[(E^(-2 + E^(5*E^x))*(-50*x^2 + 50*E^(-3 + x)*x^2) + E^(-4 + 2*E^(5*E^x))*(50*E^(-3 + x)*x - 50*x^2 + E^(5*
E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*Log[E^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]] + (-50*x^2 + 50*E^(-3 +
x)*x^2 + E^(-2 + E^(5*E^x))*(100*E^(-3 + x)*x - 100*x^2 + E^(5*E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*Log[E^
(-3 + x) - x]*Log[Log[E^(-3 + x) - x]])*Log[Log[Log[E^(-3 + x) - x]]] + (50*E^(-3 + x)*x - 50*x^2)*Log[E^(-3 +
x) - x]*Log[Log[E^(-3 + x) - x]]*Log[Log[Log[E^(-3 + x) - x]]]^2)/((E^(-3 + x) - x)*Log[E^(-3 + x) - x]*Log[L
og[E^(-3 + x) - x]]),x]
[Out]
(25*x^2*(E^E^(5*E^x) + E^2*Log[Log[Log[E^(-3 + x) - x]]])^2)/E^4
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6687
Int[(u_)*(y_)^(m_.)*(z_)^(n_.), x_Symbol] :> With[{q = DerivativeDivides[y*z, u*z^(n - m), x]}, Simp[(q*y^(m +
1)*z^(m + 1))/(m + 1), x] /; !FalseQ[q]] /; FreeQ[{m, n}, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 36, normalized size = 1.16
Antiderivative was successfully verified.
[In]
Integrate[(E^(-2 + E^(5*E^x))*(-50*x^2 + 50*E^(-3 + x)*x^2) + E^(-4 + 2*E^(5*E^x))*(50*E^(-3 + x)*x - 50*x^2 +
E^(5*E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*Log[E^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]] + (-50*x^2 + 50*E^
(-3 + x)*x^2 + E^(-2 + E^(5*E^x))*(100*E^(-3 + x)*x - 100*x^2 + E^(5*E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*
Log[E^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]])*Log[Log[Log[E^(-3 + x) - x]]] + (50*E^(-3 + x)*x - 50*x^2)*Log[E
^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]]*Log[Log[Log[E^(-3 + x) - x]]]^2)/((E^(-3 + x) - x)*Log[E^(-3 + x) - x]
*Log[Log[E^(-3 + x) - x]]),x]
[Out]
(25*x^2*(E^E^(5*E^x) + E^2*Log[Log[Log[E^(-3 + x) - x]]])^2)/E^4
________________________________________________________________________________________
fricas [B] time = 0.62, size = 87, normalized size = 2.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*log(log(exp(x-3)-x))*log(log(log(exp(x-3)-x)))^2+(((250*x^2*
exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)*log(log(ex
p(x-3)-x))+50*x^2*exp(x-3)-50*x^2)*log(log(log(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+
50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*log(log(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp
(exp(5*exp(x))-2))/(exp(x-3)-x)/log(exp(x-3)-x)/log(log(exp(x-3)-x)),x, algorithm="fricas")
[Out]
50*x^2*e^((e^(x + 5*e^x) - 2*e^x)*e^(-x))*log(log(log(-(x*e^3 - e^x)*e^(-3)))) + 25*x^2*log(log(log(-(x*e^3 -
e^x)*e^(-3))))^2 + 25*x^2*e^(2*(e^(x + 5*e^x) - 2*e^x)*e^(-x))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*log(log(exp(x-3)-x))*log(log(log(exp(x-3)-x)))^2+(((250*x^2*
exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)*log(log(ex
p(x-3)-x))+50*x^2*exp(x-3)-50*x^2)*log(log(log(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+
50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*log(log(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp
(exp(5*exp(x))-2))/(exp(x-3)-x)/log(exp(x-3)-x)/log(log(exp(x-3)-x)),x, algorithm="giac")
[Out]
integrate(50*((x^2 - x*e^(x - 3))*log(-x + e^(x - 3))*log(log(-x + e^(x - 3)))*log(log(log(-x + e^(x - 3))))^2
+ (x^2 + 5*(x^3 - x^2*e^(x - 3))*e^(x + 5*e^x) - x*e^(x - 3))*e^(2*e^(5*e^x) - 4)*log(-x + e^(x - 3))*log(log
(-x + e^(x - 3))) - (x^2*e^(x - 3) - x^2)*e^(e^(5*e^x) - 2) + ((2*x^2 + 5*(x^3 - x^2*e^(x - 3))*e^(x + 5*e^x)
- 2*x*e^(x - 3))*e^(e^(5*e^x) - 2)*log(-x + e^(x - 3))*log(log(-x + e^(x - 3))) - x^2*e^(x - 3) + x^2)*log(log
(log(-x + e^(x - 3)))))/((x - e^(x - 3))*log(-x + e^(x - 3))*log(log(-x + e^(x - 3)))), x)
________________________________________________________________________________________
maple [B] time = 0.12, size = 59, normalized size = 1.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((50*x*exp(x-3)-50*x^2)*ln(exp(x-3)-x)*ln(ln(exp(x-3)-x))*ln(ln(ln(exp(x-3)-x)))^2+(((250*x^2*exp(x-3)-250
*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)*ln(ln(exp(x-3)-x))+50*x
^2*exp(x-3)-50*x^2)*ln(ln(ln(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+50*x*exp(x-3)-50*x
^2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*ln(ln(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp(exp(5*exp(x))-2))/(e
xp(x-3)-x)/ln(exp(x-3)-x)/ln(ln(exp(x-3)-x)),x,method=_RETURNVERBOSE)
[Out]
25*x^2*exp(2*exp(5*exp(x))-4)+50*x^2*exp(exp(5*exp(x))-2)*ln(ln(ln(exp(x-3)-x)))+25*ln(ln(ln(exp(x-3)-x)))^2*x
^2
________________________________________________________________________________________
maxima [B] time = 0.75, size = 64, normalized size = 2.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*log(log(exp(x-3)-x))*log(log(log(exp(x-3)-x)))^2+(((250*x^2*
exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)*log(log(ex
p(x-3)-x))+50*x^2*exp(x-3)-50*x^2)*log(log(log(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+
50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*log(log(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp
(exp(5*exp(x))-2))/(exp(x-3)-x)/log(exp(x-3)-x)/log(log(exp(x-3)-x)),x, algorithm="maxima")
[Out]
25*(x^2*e^4*log(log(log(-x*e^3 + e^x) - 3))^2 + 2*x^2*e^(e^(5*e^x) + 2)*log(log(log(-x*e^3 + e^x) - 3)) + x^2*
e^(2*e^(5*e^x)))*e^(-4)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(log(log(exp(x - 3) - x)))*(50*x^2*exp(x - 3) - 50*x^2 + log(log(exp(x - 3) - x))*exp(exp(5*exp(x)) -
2)*log(exp(x - 3) - x)*(100*x*exp(x - 3) - 100*x^2 + exp(5*exp(x))*exp(x)*(250*x^2*exp(x - 3) - 250*x^3))) +
exp(exp(5*exp(x)) - 2)*(50*x^2*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*log(log(log(exp(x - 3) - x)))^2
*log(exp(x - 3) - x)*(50*x*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*exp(2*exp(5*exp(x)) - 4)*log(exp(x
- 3) - x)*(50*x*exp(x - 3) - 50*x^2 + exp(5*exp(x))*exp(x)*(250*x^2*exp(x - 3) - 250*x^3)))/(log(log(exp(x - 3
) - x))*log(exp(x - 3) - x)*(x - exp(x - 3))),x)
[Out]
-int((log(log(log(exp(x - 3) - x)))*(50*x^2*exp(x - 3) - 50*x^2 + log(log(exp(x - 3) - x))*exp(exp(5*exp(x)) -
2)*log(exp(x - 3) - x)*(100*x*exp(x - 3) - 100*x^2 + exp(x + 5*exp(x))*(250*x^2*exp(x - 3) - 250*x^3))) + exp
(exp(5*exp(x)) - 2)*(50*x^2*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*log(log(log(exp(x - 3) - x)))^2*lo
g(exp(x - 3) - x)*(50*x*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*exp(2*exp(5*exp(x)) - 4)*log(exp(x - 3
) - x)*(50*x*exp(x - 3) - 50*x^2 + exp(x + 5*exp(x))*(250*x^2*exp(x - 3) - 250*x^3)))/(log(log(exp(x - 3) - x)
)*log(exp(x - 3) - x)*(x - exp(x - 3))), x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((50*x*exp(x-3)-50*x**2)*ln(exp(x-3)-x)*ln(ln(exp(x-3)-x))*ln(ln(ln(exp(x-3)-x)))**2+(((250*x**2*exp
(x-3)-250*x**3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x**2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)*ln(ln(exp(x-
3)-x))+50*x**2*exp(x-3)-50*x**2)*ln(ln(ln(exp(x-3)-x)))+((250*x**2*exp(x-3)-250*x**3)*exp(x)*exp(5*exp(x))+50*
x*exp(x-3)-50*x**2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)**2*ln(ln(exp(x-3)-x))+(50*x**2*exp(x-3)-50*x**2)*exp(e
xp(5*exp(x))-2))/(exp(x-3)-x)/ln(exp(x-3)-x)/ln(ln(exp(x-3)-x)),x)
[Out]
Timed out
________________________________________________________________________________________