3.69.17 e2+e5ex(50x2+50e3+xx2)+e4+2e5ex(50e3+xx50x2+e5ex+x(250e3+xx2250x3))log(e3+xx)log(log(e3+xx))+(50x2+50e3+xx2+e2+e5ex(100e3+xx100x2+e5ex+x(250e3+xx2250x3))log(e3+xx)log(log(e3+xx)))log(log(log(e3+xx)))+(50e3+xx50x2)log(e3+xx)log(log(e3+xx))log2(log(log(e3+xx)))(e3+xx)log(e3+xx)log(log(e3+xx))dx

Optimal. Leaf size=31 25x2(e2+e5ex+log(log(log(e3+xx))))2

________________________________________________________________________________________

Rubi [A]  time = 3.74, antiderivative size = 36, normalized size of antiderivative = 1.16, number of steps used = 3, number of rules used = 3, integrand size = 293, number of rulesintegrand size = 0.010, Rules used = {6688, 12, 6687} 25x2(ee5ex+e2log(log(log(ex3x))))2e4

Antiderivative was successfully verified.

[In]

Int[(E^(-2 + E^(5*E^x))*(-50*x^2 + 50*E^(-3 + x)*x^2) + E^(-4 + 2*E^(5*E^x))*(50*E^(-3 + x)*x - 50*x^2 + E^(5*
E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*Log[E^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]] + (-50*x^2 + 50*E^(-3 +
x)*x^2 + E^(-2 + E^(5*E^x))*(100*E^(-3 + x)*x - 100*x^2 + E^(5*E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*Log[E^
(-3 + x) - x]*Log[Log[E^(-3 + x) - x]])*Log[Log[Log[E^(-3 + x) - x]]] + (50*E^(-3 + x)*x - 50*x^2)*Log[E^(-3 +
 x) - x]*Log[Log[E^(-3 + x) - x]]*Log[Log[Log[E^(-3 + x) - x]]]^2)/((E^(-3 + x) - x)*Log[E^(-3 + x) - x]*Log[L
og[E^(-3 + x) - x]]),x]

[Out]

(25*x^2*(E^E^(5*E^x) + E^2*Log[Log[Log[E^(-3 + x) - x]]])^2)/E^4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6687

Int[(u_)*(y_)^(m_.)*(z_)^(n_.), x_Symbol] :> With[{q = DerivativeDivides[y*z, u*z^(n - m), x]}, Simp[(q*y^(m +
 1)*z^(m + 1))/(m + 1), x] /;  !FalseQ[q]] /; FreeQ[{m, n}, x] && NeQ[m, -1]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=50x(ee5ex+e2log(log(log(e3+xx))))(e5x+e2+xx+(exe3x)log(e3+xx)log(log(e3+xx))(ee5ex(1+5e5ex+xx)+e2log(log(log(e3+xx)))))e4(exe3x)log(e3+xx)log(log(e3+xx))dx=50x(ee5ex+e2log(log(log(e3+xx))))(e5x+e2+xx+(exe3x)log(e3+xx)log(log(e3+xx))(ee5ex(1+5e5ex+xx)+e2log(log(log(e3+xx)))))(exe3x)log(e3+xx)log(log(e3+xx))dxe4=25x2(ee5ex+e2log(log(log(e3+xx))))2e4

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 36, normalized size = 1.16 25x2(ee5ex+e2log(log(log(e3+xx))))2e4

Antiderivative was successfully verified.

[In]

Integrate[(E^(-2 + E^(5*E^x))*(-50*x^2 + 50*E^(-3 + x)*x^2) + E^(-4 + 2*E^(5*E^x))*(50*E^(-3 + x)*x - 50*x^2 +
 E^(5*E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*Log[E^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]] + (-50*x^2 + 50*E^
(-3 + x)*x^2 + E^(-2 + E^(5*E^x))*(100*E^(-3 + x)*x - 100*x^2 + E^(5*E^x + x)*(250*E^(-3 + x)*x^2 - 250*x^3))*
Log[E^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]])*Log[Log[Log[E^(-3 + x) - x]]] + (50*E^(-3 + x)*x - 50*x^2)*Log[E
^(-3 + x) - x]*Log[Log[E^(-3 + x) - x]]*Log[Log[Log[E^(-3 + x) - x]]]^2)/((E^(-3 + x) - x)*Log[E^(-3 + x) - x]
*Log[Log[E^(-3 + x) - x]]),x]

[Out]

(25*x^2*(E^E^(5*E^x) + E^2*Log[Log[Log[E^(-3 + x) - x]]])^2)/E^4

________________________________________________________________________________________

fricas [B]  time = 0.62, size = 87, normalized size = 2.81 50x2e((e(x+5ex)2ex)e(x))log(log(log((xe3ex)e(3))))+25x2log(log(log((xe3ex)e(3))))2+25x2e(2(e(x+5ex)2ex)e(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*log(log(exp(x-3)-x))*log(log(log(exp(x-3)-x)))^2+(((250*x^2*
exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)*log(log(ex
p(x-3)-x))+50*x^2*exp(x-3)-50*x^2)*log(log(log(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+
50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*log(log(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp
(exp(5*exp(x))-2))/(exp(x-3)-x)/log(exp(x-3)-x)/log(log(exp(x-3)-x)),x, algorithm="fricas")

[Out]

50*x^2*e^((e^(x + 5*e^x) - 2*e^x)*e^(-x))*log(log(log(-(x*e^3 - e^x)*e^(-3)))) + 25*x^2*log(log(log(-(x*e^3 -
e^x)*e^(-3))))^2 + 25*x^2*e^(2*(e^(x + 5*e^x) - 2*e^x)*e^(-x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 50((x2xe(x3))log(x+e(x3))log(log(x+e(x3)))log(log(log(x+e(x3))))2+(x2+5(x3x2e(x3))e(x+5ex)xe(x3))e(2e(5ex)4)log(x+e(x3))log(log(x+e(x3)))(x2e(x3)x2)e(e(5ex)2)+((2x2+5(x3x2e(x3))e(x+5ex)2xe(x3))e(e(5ex)2)log(x+e(x3))log(log(x+e(x3)))x2e(x3)+x2)log(log(log(x+e(x3)))))(xe(x3))log(x+e(x3))log(log(x+e(x3)))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*log(log(exp(x-3)-x))*log(log(log(exp(x-3)-x)))^2+(((250*x^2*
exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)*log(log(ex
p(x-3)-x))+50*x^2*exp(x-3)-50*x^2)*log(log(log(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+
50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*log(log(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp
(exp(5*exp(x))-2))/(exp(x-3)-x)/log(exp(x-3)-x)/log(log(exp(x-3)-x)),x, algorithm="giac")

[Out]

integrate(50*((x^2 - x*e^(x - 3))*log(-x + e^(x - 3))*log(log(-x + e^(x - 3)))*log(log(log(-x + e^(x - 3))))^2
 + (x^2 + 5*(x^3 - x^2*e^(x - 3))*e^(x + 5*e^x) - x*e^(x - 3))*e^(2*e^(5*e^x) - 4)*log(-x + e^(x - 3))*log(log
(-x + e^(x - 3))) - (x^2*e^(x - 3) - x^2)*e^(e^(5*e^x) - 2) + ((2*x^2 + 5*(x^3 - x^2*e^(x - 3))*e^(x + 5*e^x)
- 2*x*e^(x - 3))*e^(e^(5*e^x) - 2)*log(-x + e^(x - 3))*log(log(-x + e^(x - 3))) - x^2*e^(x - 3) + x^2)*log(log
(log(-x + e^(x - 3)))))/((x - e^(x - 3))*log(-x + e^(x - 3))*log(log(-x + e^(x - 3)))), x)

________________________________________________________________________________________

maple [B]  time = 0.12, size = 59, normalized size = 1.90




method result size



risch 25x2e2e5ex4+50x2ee5ex2ln(ln(ln(ex3x)))+25ln(ln(ln(ex3x)))2x2 59



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((50*x*exp(x-3)-50*x^2)*ln(exp(x-3)-x)*ln(ln(exp(x-3)-x))*ln(ln(ln(exp(x-3)-x)))^2+(((250*x^2*exp(x-3)-250
*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)*ln(ln(exp(x-3)-x))+50*x
^2*exp(x-3)-50*x^2)*ln(ln(ln(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+50*x*exp(x-3)-50*x
^2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*ln(ln(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp(exp(5*exp(x))-2))/(e
xp(x-3)-x)/ln(exp(x-3)-x)/ln(ln(exp(x-3)-x)),x,method=_RETURNVERBOSE)

[Out]

25*x^2*exp(2*exp(5*exp(x))-4)+50*x^2*exp(exp(5*exp(x))-2)*ln(ln(ln(exp(x-3)-x)))+25*ln(ln(ln(exp(x-3)-x)))^2*x
^2

________________________________________________________________________________________

maxima [B]  time = 0.75, size = 64, normalized size = 2.06 25(x2e4log(log(log(xe3+ex)3))2+2x2e(e(5ex)+2)log(log(log(xe3+ex)3))+x2e(2e(5ex)))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*log(log(exp(x-3)-x))*log(log(log(exp(x-3)-x)))^2+(((250*x^2*
exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)*log(log(ex
p(x-3)-x))+50*x^2*exp(x-3)-50*x^2)*log(log(log(exp(x-3)-x)))+((250*x^2*exp(x-3)-250*x^3)*exp(x)*exp(5*exp(x))+
50*x*exp(x-3)-50*x^2)*log(exp(x-3)-x)*exp(exp(5*exp(x))-2)^2*log(log(exp(x-3)-x))+(50*x^2*exp(x-3)-50*x^2)*exp
(exp(5*exp(x))-2))/(exp(x-3)-x)/log(exp(x-3)-x)/log(log(exp(x-3)-x)),x, algorithm="maxima")

[Out]

25*(x^2*e^4*log(log(log(-x*e^3 + e^x) - 3))^2 + 2*x^2*e^(e^(5*e^x) + 2)*log(log(log(-x*e^3 + e^x) - 3)) + x^2*
e^(2*e^(5*e^x)))*e^(-4)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 ln(ln(ex3x))ln(ex3x)(50xex350x2)ln(ln(ln(ex3x)))2+(50x2ex350x2+ln(ln(ex3x))ee5ex2ln(ex3x)(100xex3100x2+ex+5ex(250x2ex3250x3)))ln(ln(ln(ex3x)))+ee5ex2(50x2ex350x2)+ln(ln(ex3x))e2e5ex4ln(ex3x)(50xex350x2+ex+5ex(250x2ex3250x3))ln(ln(ex3x))ln(ex3x)(xex3)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(log(log(exp(x - 3) - x)))*(50*x^2*exp(x - 3) - 50*x^2 + log(log(exp(x - 3) - x))*exp(exp(5*exp(x)) -
 2)*log(exp(x - 3) - x)*(100*x*exp(x - 3) - 100*x^2 + exp(5*exp(x))*exp(x)*(250*x^2*exp(x - 3) - 250*x^3))) +
exp(exp(5*exp(x)) - 2)*(50*x^2*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*log(log(log(exp(x - 3) - x)))^2
*log(exp(x - 3) - x)*(50*x*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*exp(2*exp(5*exp(x)) - 4)*log(exp(x
- 3) - x)*(50*x*exp(x - 3) - 50*x^2 + exp(5*exp(x))*exp(x)*(250*x^2*exp(x - 3) - 250*x^3)))/(log(log(exp(x - 3
) - x))*log(exp(x - 3) - x)*(x - exp(x - 3))),x)

[Out]

-int((log(log(log(exp(x - 3) - x)))*(50*x^2*exp(x - 3) - 50*x^2 + log(log(exp(x - 3) - x))*exp(exp(5*exp(x)) -
 2)*log(exp(x - 3) - x)*(100*x*exp(x - 3) - 100*x^2 + exp(x + 5*exp(x))*(250*x^2*exp(x - 3) - 250*x^3))) + exp
(exp(5*exp(x)) - 2)*(50*x^2*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*log(log(log(exp(x - 3) - x)))^2*lo
g(exp(x - 3) - x)*(50*x*exp(x - 3) - 50*x^2) + log(log(exp(x - 3) - x))*exp(2*exp(5*exp(x)) - 4)*log(exp(x - 3
) - x)*(50*x*exp(x - 3) - 50*x^2 + exp(x + 5*exp(x))*(250*x^2*exp(x - 3) - 250*x^3)))/(log(log(exp(x - 3) - x)
)*log(exp(x - 3) - x)*(x - exp(x - 3))), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((50*x*exp(x-3)-50*x**2)*ln(exp(x-3)-x)*ln(ln(exp(x-3)-x))*ln(ln(ln(exp(x-3)-x)))**2+(((250*x**2*exp
(x-3)-250*x**3)*exp(x)*exp(5*exp(x))+100*x*exp(x-3)-100*x**2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)*ln(ln(exp(x-
3)-x))+50*x**2*exp(x-3)-50*x**2)*ln(ln(ln(exp(x-3)-x)))+((250*x**2*exp(x-3)-250*x**3)*exp(x)*exp(5*exp(x))+50*
x*exp(x-3)-50*x**2)*ln(exp(x-3)-x)*exp(exp(5*exp(x))-2)**2*ln(ln(exp(x-3)-x))+(50*x**2*exp(x-3)-50*x**2)*exp(e
xp(5*exp(x))-2))/(exp(x-3)-x)/ln(exp(x-3)-x)/ln(ln(exp(x-3)-x)),x)

[Out]

Timed out

________________________________________________________________________________________