3.69.18 45+26x+112x2+18x3+(366x)log(6+x)6+xdx

Optimal. Leaf size=27 2xx23(1+2x)(1x2+log(6+x))

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 29, normalized size of antiderivative = 1.07, number of steps used = 6, number of rules used = 4, integrand size = 31, number of rulesintegrand size = 0.129, Rules used = {6742, 1850, 2389, 2295} 6x3+2x2+8x6(x+6)log(x+6)+33log(x+6)

Antiderivative was successfully verified.

[In]

Int[(45 + 26*x + 112*x^2 + 18*x^3 + (-36 - 6*x)*Log[6 + x])/(6 + x),x]

[Out]

8*x + 2*x^2 + 6*x^3 + 33*Log[6 + x] - 6*(6 + x)*Log[6 + x]

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(45+26x+112x2+18x36+x6log(6+x))dx=(6log(6+x)dx)+45+26x+112x2+18x36+xdx=(6Subst(log(x)dx,x,6+x))+(2+4x+18x2+336+x)dx=8x+2x2+6x3+33log(6+x)6(6+x)log(6+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 27, normalized size = 1.00 8x+2x2+6x33log(6+x)6xlog(6+x)

Antiderivative was successfully verified.

[In]

Integrate[(45 + 26*x + 112*x^2 + 18*x^3 + (-36 - 6*x)*Log[6 + x])/(6 + x),x]

[Out]

8*x + 2*x^2 + 6*x^3 - 3*Log[6 + x] - 6*x*Log[6 + x]

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 25, normalized size = 0.93 6x3+2x23(2x+1)log(x+6)+8x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x-36)*log(x+6)+18*x^3+112*x^2+26*x+45)/(x+6),x, algorithm="fricas")

[Out]

6*x^3 + 2*x^2 - 3*(2*x + 1)*log(x + 6) + 8*x

________________________________________________________________________________________

giac [A]  time = 0.12, size = 27, normalized size = 1.00 6x3+2x26xlog(x+6)+8x3log(x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x-36)*log(x+6)+18*x^3+112*x^2+26*x+45)/(x+6),x, algorithm="giac")

[Out]

6*x^3 + 2*x^2 - 6*x*log(x + 6) + 8*x - 3*log(x + 6)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 28, normalized size = 1.04




method result size



norman 3ln(x+6)+8x+2x2+6x36xln(x+6) 28
risch 3ln(x+6)+8x+2x2+6x36xln(x+6) 28
derivativedivides 6(x+6)36(x+6)ln(x+6)+632x+3792106(x+6)2+33ln(x+6) 35
default 6(x+6)36(x+6)ln(x+6)+632x+3792106(x+6)2+33ln(x+6) 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-6*x-36)*ln(x+6)+18*x^3+112*x^2+26*x+45)/(x+6),x,method=_RETURNVERBOSE)

[Out]

-3*ln(x+6)+8*x+2*x^2+6*x^3-6*x*ln(x+6)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 42, normalized size = 1.56 6x3+2x26(x6log(x+6))log(x+6)36log(x+6)2+8x3log(x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x-36)*log(x+6)+18*x^3+112*x^2+26*x+45)/(x+6),x, algorithm="maxima")

[Out]

6*x^3 + 2*x^2 - 6*(x - 6*log(x + 6))*log(x + 6) - 36*log(x + 6)^2 + 8*x - 3*log(x + 6)

________________________________________________________________________________________

mupad [B]  time = 0.10, size = 28, normalized size = 1.04 2x23ln(x+6)+6x3x(6ln(x+6)8)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((26*x + 112*x^2 + 18*x^3 - log(x + 6)*(6*x + 36) + 45)/(x + 6),x)

[Out]

2*x^2 - 3*log(x + 6) + 6*x^3 - x*(6*log(x + 6) - 8)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 27, normalized size = 1.00 6x3+2x26xlog(x+6)+8x3log(x+6)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-6*x-36)*ln(x+6)+18*x**3+112*x**2+26*x+45)/(x+6),x)

[Out]

6*x**3 + 2*x**2 - 6*x*log(x + 6) + 8*x - 3*log(x + 6)

________________________________________________________________________________________