3.69.20 e32x(4e2+2x+e(1+4x4x2)+e(12x)log(x))dx

Optimal. Leaf size=23 2+4xe+e22xx(2x+log(x))

________________________________________________________________________________________

Rubi [A]  time = 0.55, antiderivative size = 30, normalized size of antiderivative = 1.30, number of steps used = 18, number of rules used = 8, integrand size = 39, number of rulesintegrand size = 0.205, Rules used = {6741, 6742, 2194, 2176, 2554, 12, 2178, 2199} 2e2x2x2+4xe+e2x2xlog(x)

Antiderivative was successfully verified.

[In]

Int[E^(-3 - 2*x)*(4*E^(2 + 2*x) + E*(1 + 4*x - 4*x^2) + E*(1 - 2*x)*Log[x]),x]

[Out]

(4*x)/E + 2*E^(-2 - 2*x)*x^2 + E^(-2 - 2*x)*x*Log[x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=e22x(1+4e1+2x+4x4x2+log(x)2xlog(x))dx=(4e+e22x+4e22xx4e22xx2+e22xlog(x)2e22xxlog(x))dx=4xe2e22xxlog(x)dx+4e22xxdx4e22xx2dx+e22xdx+e22xlog(x)dx=12e22x+4xe2e22xx+2e22xx2+e22xxlog(x)+2e22xdx+2e22x(12x)4xdx4e22xxdxe22x2xdx=32e22x+4xe+2e22xx2+e22xxlog(x)+12e22xxdx+12e22x(12x)xdx2e22xdx=12e22x+4xe+2e22xx2+Ei(2x)2e2+e22xxlog(x)+12(2e22xe22xx)dx=12e22x+4xe+2e22xx2+Ei(2x)2e2+e22xxlog(x)12e22xxdxe22xdx=4xe+2e22xx2+e22xxlog(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 24, normalized size = 1.04 e2(1+x)x(4e1+2x+2x+log(x))

Antiderivative was successfully verified.

[In]

Integrate[E^(-3 - 2*x)*(4*E^(2 + 2*x) + E*(1 + 4*x - 4*x^2) + E*(1 - 2*x)*Log[x]),x]

[Out]

(x*(4*E^(1 + 2*x) + 2*x + Log[x]))/E^(2*(1 + x))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 30, normalized size = 1.30 (2x2e+xelog(x)+4xe(2x+2))e(2x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1-2*x)*exp(1)*log(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x, algorithm="fricas")

[Out]

(2*x^2*e + x*e*log(x) + 4*x*e^(2*x + 2))*e^(-2*x - 3)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 30, normalized size = 1.30 (2x2e(2x+1)+xe(2x+1)log(x)+4xe2)e(3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1-2*x)*exp(1)*log(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x, algorithm="giac")

[Out]

(2*x^2*e^(-2*x + 1) + x*e^(-2*x + 1)*log(x) + 4*x*e^2)*e^(-3)

________________________________________________________________________________________

maple [A]  time = 0.14, size = 31, normalized size = 1.35




method result size



default e1(4x+(xeln(x)+2x2e)e2x2) 31
norman (xln(x)+2x2+4xe1e2x+2)e2x2 31
risch xe2x2ln(x)+2(xe+2e2x+2)xe2x3 34



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1-2*x)*exp(1)*ln(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x,method=_RETURNVERBOSE)

[Out]

1/exp(1)*(4*x+(x*exp(1)*ln(x)+2*x^2*exp(1))/exp(x+1)^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 12(2x+1)e(2x2)log(x)+4xe(1)+12Ei(2x)e(2)+(2x2+2x+1)e(2x2)(2x+1)e(2x2)12e(2x2)log(x)12e(2x2)12(2x+1)e(2x2)xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1-2*x)*exp(1)*log(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x, algorithm="maxima")

[Out]

1/2*(2*x + 1)*e^(-2*x - 2)*log(x) + 4*x*e^(-1) + 1/2*Ei(-2*x)*e^(-2) + (2*x^2 + 2*x + 1)*e^(-2*x - 2) - (2*x +
 1)*e^(-2*x - 2) - 1/2*e^(-2*x - 2)*log(x) - 1/2*e^(-2*x - 2) - 1/2*integrate((2*x + 1)*e^(-2*x - 2)/x, x)

________________________________________________________________________________________

mupad [B]  time = 4.14, size = 27, normalized size = 1.17 4xe1+2x2e2x2+xe2x2ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-1)*exp(- 2*x - 2)*(4*exp(2*x + 2) + exp(1)*(4*x - 4*x^2 + 1) - exp(1)*log(x)*(2*x - 1)),x)

[Out]

4*x*exp(-1) + 2*x^2*exp(- 2*x - 2) + x*exp(- 2*x - 2)*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.32, size = 24, normalized size = 1.04 4xe+(2x2+xlog(x))e2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((1-2*x)*exp(1)*ln(x)+4*exp(x+1)**2+(-4*x**2+4*x+1)*exp(1))/exp(1)/exp(x+1)**2,x)

[Out]

4*x*exp(-1) + (2*x**2 + x*log(x))*exp(-2*x - 2)

________________________________________________________________________________________