3.69.20
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [A] time = 0.55, antiderivative size = 30, normalized size of antiderivative = 1.30,
number of steps used = 18, number of rules used = 8, integrand size = 39, = 0.205, Rules used
= {6741, 6742, 2194, 2176, 2554, 12, 2178, 2199}
Antiderivative was successfully verified.
[In]
Int[E^(-3 - 2*x)*(4*E^(2 + 2*x) + E*(1 + 4*x - 4*x^2) + E*(1 - 2*x)*Log[x]),x]
[Out]
(4*x)/E + 2*E^(-2 - 2*x)*x^2 + E^(-2 - 2*x)*x*Log[x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 2554
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 24, normalized size = 1.04
Antiderivative was successfully verified.
[In]
Integrate[E^(-3 - 2*x)*(4*E^(2 + 2*x) + E*(1 + 4*x - 4*x^2) + E*(1 - 2*x)*Log[x]),x]
[Out]
(x*(4*E^(1 + 2*x) + 2*x + Log[x]))/E^(2*(1 + x))
________________________________________________________________________________________
fricas [A] time = 0.45, size = 30, normalized size = 1.30
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((1-2*x)*exp(1)*log(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x, algorithm="fricas")
[Out]
(2*x^2*e + x*e*log(x) + 4*x*e^(2*x + 2))*e^(-2*x - 3)
________________________________________________________________________________________
giac [A] time = 0.13, size = 30, normalized size = 1.30
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((1-2*x)*exp(1)*log(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x, algorithm="giac")
[Out]
(2*x^2*e^(-2*x + 1) + x*e^(-2*x + 1)*log(x) + 4*x*e^2)*e^(-3)
________________________________________________________________________________________
maple [A] time = 0.14, size = 31, normalized size = 1.35
|
|
|
method |
result |
size |
|
|
|
default |
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((1-2*x)*exp(1)*ln(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x,method=_RETURNVERBOSE)
[Out]
1/exp(1)*(4*x+(x*exp(1)*ln(x)+2*x^2*exp(1))/exp(x+1)^2)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((1-2*x)*exp(1)*log(x)+4*exp(x+1)^2+(-4*x^2+4*x+1)*exp(1))/exp(1)/exp(x+1)^2,x, algorithm="maxima")
[Out]
1/2*(2*x + 1)*e^(-2*x - 2)*log(x) + 4*x*e^(-1) + 1/2*Ei(-2*x)*e^(-2) + (2*x^2 + 2*x + 1)*e^(-2*x - 2) - (2*x +
1)*e^(-2*x - 2) - 1/2*e^(-2*x - 2)*log(x) - 1/2*e^(-2*x - 2) - 1/2*integrate((2*x + 1)*e^(-2*x - 2)/x, x)
________________________________________________________________________________________
mupad [B] time = 4.14, size = 27, normalized size = 1.17
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(exp(-1)*exp(- 2*x - 2)*(4*exp(2*x + 2) + exp(1)*(4*x - 4*x^2 + 1) - exp(1)*log(x)*(2*x - 1)),x)
[Out]
4*x*exp(-1) + 2*x^2*exp(- 2*x - 2) + x*exp(- 2*x - 2)*log(x)
________________________________________________________________________________________
sympy [A] time = 0.32, size = 24, normalized size = 1.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((1-2*x)*exp(1)*ln(x)+4*exp(x+1)**2+(-4*x**2+4*x+1)*exp(1))/exp(1)/exp(x+1)**2,x)
[Out]
4*x*exp(-1) + (2*x**2 + x*log(x))*exp(-2*x - 2)
________________________________________________________________________________________