3.69.21
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-4*x - 6*x^2 - 2*x^3 + E^x*(2*x + 2*x^2) + E^((x^2 + Log[-2*x + E^x*x - x^2]^2)/x)*(-2*x - 3*x^2 - x^3 +
E^x*(x + x^2) + (-4 - 4*x + E^x*(2 + 2*x))*Log[-2*x + E^x*x - x^2] + (2 - E^x + x)*Log[-2*x + E^x*x - x^2]^2))
/(-2*x + E^x*x - x^2),x]
[Out]
$Aborted
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 27, normalized size = 0.96
Antiderivative was successfully verified.
[In]
Integrate[(-4*x - 6*x^2 - 2*x^3 + E^x*(2*x + 2*x^2) + E^((x^2 + Log[-2*x + E^x*x - x^2]^2)/x)*(-2*x - 3*x^2 -
x^3 + E^x*(x + x^2) + (-4 - 4*x + E^x*(2 + 2*x))*Log[-2*x + E^x*x - x^2] + (2 - E^x + x)*Log[-2*x + E^x*x - x^
2]^2))/(-2*x + E^x*x - x^2),x]
[Out]
x*(2 + E^(x + Log[-(x*(2 - E^x + x))]^2/x) + x)
________________________________________________________________________________________
fricas [A] time = 0.57, size = 34, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-exp(x)+2)*log(exp(x)*x-x^2-2*x)^2+((2*x+2)*exp(x)-4*x-4)*log(exp(x)*x-x^2-2*x)+(x^2+x)*exp(x)-x
^3-3*x^2-2*x)*exp((log(exp(x)*x-x^2-2*x)^2+x^2)/x)+(2*x^2+2*x)*exp(x)-2*x^3-6*x^2-4*x)/(exp(x)*x-x^2-2*x),x, a
lgorithm="fricas")
[Out]
x^2 + x*e^((x^2 + log(-x^2 + x*e^x - 2*x)^2)/x) + 2*x
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-exp(x)+2)*log(exp(x)*x-x^2-2*x)^2+((2*x+2)*exp(x)-4*x-4)*log(exp(x)*x-x^2-2*x)+(x^2+x)*exp(x)-x
^3-3*x^2-2*x)*exp((log(exp(x)*x-x^2-2*x)^2+x^2)/x)+(2*x^2+2*x)*exp(x)-2*x^3-6*x^2-4*x)/(exp(x)*x-x^2-2*x),x, a
lgorithm="giac")
[Out]
integrate((2*x^3 + 6*x^2 - 2*(x^2 + x)*e^x + (x^3 - (x - e^x + 2)*log(-x^2 + x*e^x - 2*x)^2 + 3*x^2 - (x^2 + x
)*e^x - 2*((x + 1)*e^x - 2*x - 2)*log(-x^2 + x*e^x - 2*x) + 2*x)*e^((x^2 + log(-x^2 + x*e^x - 2*x)^2)/x) + 4*x
)/(x^2 - x*e^x + 2*x), x)
________________________________________________________________________________________
maple [C] time = 0.34, size = 812, normalized size = 29.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((x-exp(x)+2)*ln(exp(x)*x-x^2-2*x)^2+((2*x+2)*exp(x)-4*x-4)*ln(exp(x)*x-x^2-2*x)+(x^2+x)*exp(x)-x^3-3*x^2
-2*x)*exp((ln(exp(x)*x-x^2-2*x)^2+x^2)/x)+(2*x^2+2*x)*exp(x)-2*x^3-6*x^2-4*x)/(exp(x)*x-x^2-2*x),x,method=_RET
URNVERBOSE)
[Out]
x^2+x*x^(2*I/x*Pi)*(x-exp(x)+2)^(2*I/x*Pi)*x^(I/x*Pi*csgn(I*x))*(x-exp(x)+2)^(I/x*Pi*csgn(I*x))*x^(-I/x*Pi*csg
n(I*(exp(x)-2-x)))*(x-exp(x)+2)^(-I/x*Pi*csgn(I*(exp(x)-2-x)))*(x-exp(x)+2)^(2*ln(x)/x)*x^(-I/x*Pi*csgn(I*x*(e
xp(x)-2-x))*csgn(I*x)*csgn(I*(exp(x)-2-x)))*(x-exp(x)+2)^(-I/x*Pi*csgn(I*x*(exp(x)-2-x))*csgn(I*x)*csgn(I*(exp
(x)-2-x)))*x^(-I*csgn(I*x*(exp(x)-2-x))*Pi/x)*(x-exp(x)+2)^(-I*csgn(I*x*(exp(x)-2-x))*Pi/x)*x^(-2*I/x*Pi)*(x-e
xp(x)+2)^(-2*I/x*Pi)*exp(1/4*(-Pi^2*csgn(I*x*(exp(x)-2-x))^4*csgn(I*(exp(x)-2-x))^2-2*Pi^2*csgn(I*x*(exp(x)-2-
x))^3*csgn(I*(exp(x)-2-x))^2*csgn(I*x)-Pi^2*csgn(I*x*(exp(x)-2-x))^2*csgn(I*x)^2*csgn(I*(exp(x)-2-x))^2-2*Pi^2
*csgn(I*x*(exp(x)-2-x))^5*csgn(I*(exp(x)-2-x))+2*Pi^2*csgn(I*x*(exp(x)-2-x))^3*csgn(I*x)^2*csgn(I*(exp(x)-2-x)
)-Pi^2*csgn(I*x*(exp(x)-2-x))^6+2*Pi^2*csgn(I*x*(exp(x)-2-x))^5*csgn(I*x)-Pi^2*csgn(I*x*(exp(x)-2-x))^4*csgn(I
*x)^2-4*Pi^2*csgn(I*x*(exp(x)-2-x))^4*csgn(I*(exp(x)-2-x))-4*Pi^2*csgn(I*x*(exp(x)-2-x))^3*csgn(I*x)*csgn(I*(e
xp(x)-2-x))-4*Pi^2*csgn(I*x*(exp(x)-2-x))^5+4*Pi^2*csgn(I*x*(exp(x)-2-x))^4*csgn(I*x)-4*Pi^2*csgn(I*x*(exp(x)-
2-x))^4+4*Pi^2*csgn(I*x*(exp(x)-2-x))^2*csgn(I*(exp(x)-2-x))+4*Pi^2*csgn(I*x*(exp(x)-2-x))*csgn(I*x)*csgn(I*(e
xp(x)-2-x))+4*Pi^2*csgn(I*x*(exp(x)-2-x))^3-4*Pi^2*csgn(I*x*(exp(x)-2-x))^2*csgn(I*x)+8*Pi^2*csgn(I*x*(exp(x)-
2-x))^2-4*Pi^2+4*ln(x)^2+4*ln(x-exp(x)+2)^2+4*x^2)/x)+2*x
________________________________________________________________________________________
maxima [A] time = 0.44, size = 49, normalized size = 1.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-exp(x)+2)*log(exp(x)*x-x^2-2*x)^2+((2*x+2)*exp(x)-4*x-4)*log(exp(x)*x-x^2-2*x)+(x^2+x)*exp(x)-x
^3-3*x^2-2*x)*exp((log(exp(x)*x-x^2-2*x)^2+x^2)/x)+(2*x^2+2*x)*exp(x)-2*x^3-6*x^2-4*x)/(exp(x)*x-x^2-2*x),x, a
lgorithm="maxima")
[Out]
x^2 + x*e^(x + log(x)^2/x + 2*log(x)*log(-x + e^x - 2)/x + log(-x + e^x - 2)^2/x) + 2*x
________________________________________________________________________________________
mupad [B] time = 4.30, size = 32, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*x + exp((x^2 + log(x*exp(x) - 2*x - x^2)^2)/x)*(2*x - log(x*exp(x) - 2*x - x^2)^2*(x - exp(x) + 2) + lo
g(x*exp(x) - 2*x - x^2)*(4*x - exp(x)*(2*x + 2) + 4) + 3*x^2 + x^3 - exp(x)*(x + x^2)) - exp(x)*(2*x + 2*x^2)
+ 6*x^2 + 2*x^3)/(2*x - x*exp(x) + x^2),x)
[Out]
2*x + x^2 + x*exp(log(x*exp(x) - 2*x - x^2)^2/x)*exp(x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-exp(x)+2)*ln(exp(x)*x-x**2-2*x)**2+((2*x+2)*exp(x)-4*x-4)*ln(exp(x)*x-x**2-2*x)+(x**2+x)*exp(x)
-x**3-3*x**2-2*x)*exp((ln(exp(x)*x-x**2-2*x)**2+x**2)/x)+(2*x**2+2*x)*exp(x)-2*x**3-6*x**2-4*x)/(exp(x)*x-x**2
-2*x),x)
[Out]
Timed out
________________________________________________________________________________________