3.69.22 384e4(16x)x10x3+10e3x3x2+e3x2dx

Optimal. Leaf size=29 6e4(16x)x1+e3+5(5+x2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 26, normalized size of antiderivative = 0.90, number of steps used = 6, number of rules used = 4, integrand size = 44, number of rulesintegrand size = 0.091, Rules used = {6, 12, 14, 2209} 5x26e64x41e3

Antiderivative was successfully verified.

[In]

Int[(-384*E^((4*(16 - x))/x) - 10*x^3 + 10*E^3*x^3)/(-x^2 + E^3*x^2),x]

[Out]

(-6*E^(-4 + 64/x))/(1 - E^3) + 5*x^2

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2209

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[((e + f*x)^n*
F^(a + b*(c + d*x)^n))/(b*f*n*(c + d*x)^n*Log[F]), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]

Rubi steps

integral=384e4(16x)x10x3+10e3x3(1+e3)x2dx=384e4(16x)x+(10+10e3)x3(1+e3)x2dx=384e4(16x)x+(10+10e3)x3x2dx1+e3=(384e4+64xx2+10(1+e3)x)dx1+e3=5x2+384e4+64xx2dx1e3=6e4+64x1e3+5x2

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 39, normalized size = 1.34 2(3e64/x52e4(1e3)x2)e4(1+e3)

Antiderivative was successfully verified.

[In]

Integrate[(-384*E^((4*(16 - x))/x) - 10*x^3 + 10*E^3*x^3)/(-x^2 + E^3*x^2),x]

[Out]

(2*(3*E^(64/x) - (5*E^4*(1 - E^3)*x^2)/2))/(E^4*(-1 + E^3))

________________________________________________________________________________________

fricas [A]  time = 0.45, size = 31, normalized size = 1.07 5x2e35x2+6e(4(x16)x)e31

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x, algorithm="fricas")

[Out]

(5*x^2*e^3 - 5*x^2 + 6*e^(-4*(x - 16)/x))/(e^3 - 1)

________________________________________________________________________________________

giac [B]  time = 0.15, size = 100, normalized size = 3.45 2(3(x16)2e(4(x16)x)x26(x16)e(4(x16)x)x+640e3+3e(4(x16)x)640)(x16)2e3x22(x16)e3x(x16)2x2+2(x16)x+e31

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x, algorithm="giac")

[Out]

2*(3*(x - 16)^2*e^(-4*(x - 16)/x)/x^2 - 6*(x - 16)*e^(-4*(x - 16)/x)/x + 640*e^3 + 3*e^(-4*(x - 16)/x) - 640)/
((x - 16)^2*e^3/x^2 - 2*(x - 16)*e^3/x - (x - 16)^2/x^2 + 2*(x - 16)/x + e^3 - 1)

________________________________________________________________________________________

maple [A]  time = 0.10, size = 24, normalized size = 0.83




method result size



risch 5x2+6e4(x16)xe31 24
norman 5x3+6xe4x+64xe31x 32
derivativedivides 1280x2256e3256+6e4+64xe31+1280e3x2256e3256 48
default 1280x2256e3256+6e4+64xe31+1280e3x2256e3256 48



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x,method=_RETURNVERBOSE)

[Out]

5*x^2+6*exp(-4*(x-16)/x)/(exp(3)-1)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 42, normalized size = 1.45 5x2e3e315x2e31+6e64xe7e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-384*exp((16-x)/x)^4+10*x^3*exp(3)-10*x^3)/(x^2*exp(3)-x^2),x, algorithm="maxima")

[Out]

5*x^2*e^3/(e^3 - 1) - 5*x^2/(e^3 - 1) + 6*e^(64/x)/(e^7 - e^4)

________________________________________________________________________________________

mupad [B]  time = 4.11, size = 33, normalized size = 1.14 6e64x4e31+x2(5e35)e31

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(384*exp(-(4*(x - 16))/x) - 10*x^3*exp(3) + 10*x^3)/(x^2*exp(3) - x^2),x)

[Out]

(6*exp(64/x - 4))/(exp(3) - 1) + (x^2*(5*exp(3) - 5))/(exp(3) - 1)

________________________________________________________________________________________

sympy [A]  time = 0.20, size = 19, normalized size = 0.66 5x2+6e4(16x)x1+e3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-384*exp((16-x)/x)**4+10*x**3*exp(3)-10*x**3)/(x**2*exp(3)-x**2),x)

[Out]

5*x**2 + 6*exp(4*(16 - x)/x)/(-1 + exp(3))

________________________________________________________________________________________