3.69.25
Optimal. Leaf size=16
________________________________________________________________________________________
Rubi [A] time = 0.41, antiderivative size = 26, normalized size of antiderivative =
1.62, number of steps used = 14, number of rules used = 10, integrand size = 69,
= 0.145, Rules used = {6741, 6742, 2389, 2299, 2178, 2411, 2353, 2297, 2302, 30}
Antiderivative was successfully verified.
[In]
Int[(4 + 37*x + 32*x^2 + (-1 - 17*x - 16*x^2)*Log[1 + x] + (2*x + 2*x^2)*Log[1 + x]^2)/(16 + 16*x + (-8 - 8*x)
*Log[1 + x] + (1 + x)*Log[1 + x]^2),x]
[Out]
x^2 + (1 + x)/(4 - Log[1 + x]) + (-4 + Log[1 + x])^(-1)
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2297
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
IntegerQ[2*p]
Rule 2299
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[1/(n*c^(1/n)), Subst[Int[E^(x/n)*(a + b*x)^p
, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rule 2389
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]
Rule 2411
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 16, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(4 + 37*x + 32*x^2 + (-1 - 17*x - 16*x^2)*Log[1 + x] + (2*x + 2*x^2)*Log[1 + x]^2)/(16 + 16*x + (-8
- 8*x)*Log[1 + x] + (1 + x)*Log[1 + x]^2),x]
[Out]
-1 + x^2 - x/(-4 + Log[1 + x])
________________________________________________________________________________________
fricas [A] time = 0.46, size = 26, normalized size = 1.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2+2*x)*log(x+1)^2+(-16*x^2-17*x-1)*log(x+1)+32*x^2+37*x+4)/((x+1)*log(x+1)^2+(-8*x-8)*log(x+1)
+16*x+16),x, algorithm="fricas")
[Out]
(x^2*log(x + 1) - 4*x^2 - x)/(log(x + 1) - 4)
________________________________________________________________________________________
giac [A] time = 0.17, size = 15, normalized size = 0.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2+2*x)*log(x+1)^2+(-16*x^2-17*x-1)*log(x+1)+32*x^2+37*x+4)/((x+1)*log(x+1)^2+(-8*x-8)*log(x+1)
+16*x+16),x, algorithm="giac")
[Out]
x^2 - x/(log(x + 1) - 4)
________________________________________________________________________________________
maple [A] time = 0.03, size = 16, normalized size = 1.00
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^2+2*x)*ln(x+1)^2+(-16*x^2-17*x-1)*ln(x+1)+32*x^2+37*x+4)/((x+1)*ln(x+1)^2+(-8*x-8)*ln(x+1)+16*x+16),
x,method=_RETURNVERBOSE)
[Out]
x^2-x/(ln(x+1)-4)
________________________________________________________________________________________
maxima [B] time = 0.39, size = 38, normalized size = 2.38
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2+2*x)*log(x+1)^2+(-16*x^2-17*x-1)*log(x+1)+32*x^2+37*x+4)/((x+1)*log(x+1)^2+(-8*x-8)*log(x+1)
+16*x+16),x, algorithm="maxima")
[Out]
(x^2*log(x + 1) - 4*x^2 - x + 4)/(log(x + 1) - 4) - 4/(log(x + 1) - 4)
________________________________________________________________________________________
mupad [B] time = 4.27, size = 15, normalized size = 0.94
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((37*x - log(x + 1)*(17*x + 16*x^2 + 1) + log(x + 1)^2*(2*x + 2*x^2) + 32*x^2 + 4)/(16*x - log(x + 1)*(8*x
+ 8) + log(x + 1)^2*(x + 1) + 16),x)
[Out]
x^2 - x/(log(x + 1) - 4)
________________________________________________________________________________________
sympy [A] time = 0.13, size = 10, normalized size = 0.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**2+2*x)*ln(x+1)**2+(-16*x**2-17*x-1)*ln(x+1)+32*x**2+37*x+4)/((x+1)*ln(x+1)**2+(-8*x-8)*ln(x+1
)+16*x+16),x)
[Out]
x**2 - x/(log(x + 1) - 4)
________________________________________________________________________________________