3.69.27 36+49x+(33x52x2)log(9x)+(6x2+13x3)log2(9x)4x34x4log(9x)+x5log2(9x)dx

Optimal. Leaf size=29 13+3+3x(2x+log(9x))xx

________________________________________________________________________________________

Rubi [F]  time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 36+49x+(33x52x2)log(9x)+(6x2+13x3)log2(9x)4x34x4log(9x)+x5log2(9x)dx

Verification is not applicable to the result.

[In]

Int[(36 + 49*x + (-33*x - 52*x^2)*Log[9*x] + (6*x^2 + 13*x^3)*Log[9*x]^2)/(4*x^3 - 4*x^4*Log[9*x] + x^5*Log[9*
x]^2),x]

[Out]

-1/12*(6 + 13*x)^2/x^2 - 6*Defer[Int][1/(x^3*(-2 + x*Log[9*x])^2), x] - 3*Defer[Int][1/(x^2*(-2 + x*Log[9*x])^
2), x] - 9*Defer[Int][1/(x^3*(-2 + x*Log[9*x])), x]

Rubi steps

integral=36+49xx(33+52x)log(9x)+x2(6+13x)log2(9x)x3(2xlog(9x))2dx=(6+13xx33(2+x)x3(2+xlog(9x))29x3(2+xlog(9x)))dx=(32+xx3(2+xlog(9x))2dx)91x3(2+xlog(9x))dx+6+13xx3dx=(6+13x)212x23(2x3(2+xlog(9x))2+1x2(2+xlog(9x))2)dx91x3(2+xlog(9x))dx=(6+13x)212x231x2(2+xlog(9x))2dx61x3(2+xlog(9x))2dx91x3(2+xlog(9x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 21, normalized size = 0.72 313x+32+xlog(9x)x2

Antiderivative was successfully verified.

[In]

Integrate[(36 + 49*x + (-33*x - 52*x^2)*Log[9*x] + (6*x^2 + 13*x^3)*Log[9*x]^2)/(4*x^3 - 4*x^4*Log[9*x] + x^5*
Log[9*x]^2),x]

[Out]

(-3 - 13*x + 3/(-2 + x*Log[9*x]))/x^2

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 37, normalized size = 1.28 (13x2+3x)log(9x)26x9x3log(9x)2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x^3+6*x^2)*log(9*x)^2+(-52*x^2-33*x)*log(9*x)+49*x+36)/(x^5*log(9*x)^2-4*x^4*log(9*x)+4*x^3),x,
 algorithm="fricas")

[Out]

-((13*x^2 + 3*x)*log(9*x) - 26*x - 9)/(x^3*log(9*x) - 2*x^2)

________________________________________________________________________________________

giac [A]  time = 0.18, size = 29, normalized size = 1.00 3x3log(9x)2x213x+3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x^3+6*x^2)*log(9*x)^2+(-52*x^2-33*x)*log(9*x)+49*x+36)/(x^5*log(9*x)^2-4*x^4*log(9*x)+4*x^3),x,
 algorithm="giac")

[Out]

3/(x^3*log(9*x) - 2*x^2) - (13*x + 3)/x^2

________________________________________________________________________________________

maple [A]  time = 0.05, size = 27, normalized size = 0.93




method result size



risch 13x+3x2+3x2(xln(9x)2) 27
norman 913x2ln(9x)+26x3xln(9x)x2(xln(9x)2) 36



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((13*x^3+6*x^2)*ln(9*x)^2+(-52*x^2-33*x)*ln(9*x)+49*x+36)/(x^5*ln(9*x)^2-4*x^4*ln(9*x)+4*x^3),x,method=_RE
TURNVERBOSE)

[Out]

-(13*x+3)/x^2+3/x^2/(x*ln(9*x)-2)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 53, normalized size = 1.83 26x2log(3)+2x(3log(3)13)+(13x2+3x)log(x)92x3log(3)+x3log(x)2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x^3+6*x^2)*log(9*x)^2+(-52*x^2-33*x)*log(9*x)+49*x+36)/(x^5*log(9*x)^2-4*x^4*log(9*x)+4*x^3),x,
 algorithm="maxima")

[Out]

-(26*x^2*log(3) + 2*x*(3*log(3) - 13) + (13*x^2 + 3*x)*log(x) - 9)/(2*x^3*log(3) + x^3*log(x) - 2*x^2)

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 35, normalized size = 1.21 26x3xln(9x)13x2ln(9x)+9x2(xln(9x)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((49*x - log(9*x)*(33*x + 52*x^2) + log(9*x)^2*(6*x^2 + 13*x^3) + 36)/(4*x^3 - 4*x^4*log(9*x) + x^5*log(9*x
)^2),x)

[Out]

(26*x - 3*x*log(9*x) - 13*x^2*log(9*x) + 9)/(x^2*(x*log(9*x) - 2))

________________________________________________________________________________________

sympy [A]  time = 0.17, size = 24, normalized size = 0.83 3x3log(9x)2x2+13x3x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((13*x**3+6*x**2)*ln(9*x)**2+(-52*x**2-33*x)*ln(9*x)+49*x+36)/(x**5*ln(9*x)**2-4*x**4*ln(9*x)+4*x**3
),x)

[Out]

3/(x**3*log(9*x) - 2*x**2) + (-13*x - 3)/x**2

________________________________________________________________________________________