Optimal. Leaf size=30 \[ e^{\frac {e^{16-x} \log ^2(x)}{x \left (-\log (5)+\log \left (\frac {16}{x^2}\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 37.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {e^{16-x} \log ^2(x)}{-x \log (5)+x \log \left (\frac {16}{x^2}\right )}} \left (\left (-2 e^{16-x} \log (5)+2 e^{16-x} \log \left (\frac {16}{x^2}\right )\right ) \log (x)+\left (e^{16-x} (2+(1+x) \log (5))+e^{16-x} (-1-x) \log \left (\frac {16}{x^2}\right )\right ) \log ^2(x)\right )}{x^2 \log ^2(5)-2 x^2 \log (5) \log \left (\frac {16}{x^2}\right )+x^2 \log ^2\left (\frac {16}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log (x) \left (-2 \log (5)+(2+\log (5)+x \log (5)) \log (x)-\log \left (\frac {16}{x^2}\right ) (-2+(1+x) \log (x))\right )}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )} \, dx\\ &=\int \left (\frac {2 e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log (x)}{x^2 \log \left (\frac {16}{5 x^2}\right )}+\frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \left (2 \left (1+\frac {\log (5)}{2}\right )+x \log (5)-\log \left (\frac {16}{x^2}\right )-x \log \left (\frac {16}{x^2}\right )\right ) \log ^2(x)}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )}\right ) \, dx\\ &=2 \int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log (x)}{x^2 \log \left (\frac {16}{5 x^2}\right )} \, dx+\int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \left (2 \left (1+\frac {\log (5)}{2}\right )+x \log (5)-\log \left (\frac {16}{x^2}\right )-x \log \left (\frac {16}{x^2}\right )\right ) \log ^2(x)}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )} \, dx\\ &=2 \int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log (x)}{x^2 \log \left (\frac {16}{5 x^2}\right )} \, dx+\int \left (\frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log (5) \log ^2(x)}{x \log ^2\left (\frac {16}{5 x^2}\right )}+\frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} (2+\log (5)) \log ^2(x)}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )}-\frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log \left (\frac {16}{x^2}\right ) \log ^2(x)}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )}-\frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log \left (\frac {16}{x^2}\right ) \log ^2(x)}{x \log ^2\left (\frac {16}{5 x^2}\right )}\right ) \, dx\\ &=2 \int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log (x)}{x^2 \log \left (\frac {16}{5 x^2}\right )} \, dx+\log (5) \int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log ^2(x)}{x \log ^2\left (\frac {16}{5 x^2}\right )} \, dx+(2+\log (5)) \int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log ^2(x)}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )} \, dx-\int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log \left (\frac {16}{x^2}\right ) \log ^2(x)}{x^2 \log ^2\left (\frac {16}{5 x^2}\right )} \, dx-\int \frac {e^{16-x+\frac {e^{16-x} \log ^2(x)}{x \log \left (\frac {16}{5 x^2}\right )}} \log \left (\frac {16}{x^2}\right ) \log ^2(x)}{x \log ^2\left (\frac {16}{5 x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.84, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {e^{16-x} \log ^2(x)}{-x \log (5)+x \log \left (\frac {16}{x^2}\right )}} \left (\left (-2 e^{16-x} \log (5)+2 e^{16-x} \log \left (\frac {16}{x^2}\right )\right ) \log (x)+\left (e^{16-x} (2+(1+x) \log (5))+e^{16-x} (-1-x) \log \left (\frac {16}{x^2}\right )\right ) \log ^2(x)\right )}{x^2 \log ^2(5)-2 x^2 \log (5) \log \left (\frac {16}{x^2}\right )+x^2 \log ^2\left (\frac {16}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.94, size = 63, normalized size = 2.10 \begin {gather*} e^{\left (-\frac {16 \, e^{\left (-x + 16\right )} \log \relax (2)^{2} - 8 \, e^{\left (-x + 16\right )} \log \relax (2) \log \left (\frac {16}{x^{2}}\right ) + e^{\left (-x + 16\right )} \log \left (\frac {16}{x^{2}}\right )^{2}}{4 \, {\left (x \log \relax (5) - x \log \left (\frac {16}{x^{2}}\right )\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left ({\left (x + 1\right )} e^{\left (-x + 16\right )} \log \left (\frac {16}{x^{2}}\right ) - {\left ({\left (x + 1\right )} \log \relax (5) + 2\right )} e^{\left (-x + 16\right )}\right )} \log \relax (x)^{2} + 2 \, {\left (e^{\left (-x + 16\right )} \log \relax (5) - e^{\left (-x + 16\right )} \log \left (\frac {16}{x^{2}}\right )\right )} \log \relax (x)\right )} e^{\left (-\frac {e^{\left (-x + 16\right )} \log \relax (x)^{2}}{x \log \relax (5) - x \log \left (\frac {16}{x^{2}}\right )}\right )}}{x^{2} \log \relax (5)^{2} - 2 \, x^{2} \log \relax (5) \log \left (\frac {16}{x^{2}}\right ) + x^{2} \log \left (\frac {16}{x^{2}}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 4.55, size = 81, normalized size = 2.70
method | result | size |
risch | \({\mathrm e}^{\frac {2 \,{\mathrm e}^{16-x} \ln \relax (x )^{2}}{x \left (i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}-4 \ln \relax (x )-2 \ln \relax (5)+8 \ln \relax (2)\right )}}\) | \(81\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.97, size = 30, normalized size = 1.00 \begin {gather*} e^{\left (-\frac {e^{16} \log \relax (x)^{2}}{x {\left (\log \relax (5) - 4 \, \log \relax (2)\right )} e^{x} + 2 \, x e^{x} \log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int -\frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^{16-x}\,{\ln \relax (x)}^2}{x\,\ln \relax (5)-x\,\ln \left (\frac {16}{x^2}\right )}}\,\left ({\ln \relax (x)}^2\,\left ({\mathrm {e}}^{16-x}\,\left (\ln \relax (5)\,\left (x+1\right )+2\right )-{\mathrm {e}}^{16-x}\,\ln \left (\frac {16}{x^2}\right )\,\left (x+1\right )\right )-\ln \relax (x)\,\left (2\,{\mathrm {e}}^{16-x}\,\ln \relax (5)-2\,{\mathrm {e}}^{16-x}\,\ln \left (\frac {16}{x^2}\right )\right )\right )}{x^2\,{\ln \left (\frac {16}{x^2}\right )}^2-2\,\ln \relax (5)\,x^2\,\ln \left (\frac {16}{x^2}\right )+{\ln \relax (5)}^2\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.72, size = 26, normalized size = 0.87 \begin {gather*} e^{\frac {e^{16 - x} \log {\relax (x )}^{2}}{x \left (- 2 \log {\relax (x )} + \log {\left (16 \right )}\right ) - x \log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________