3.69.31 (16e9+9e18log(4)+(26e9)log(x)+log2(x))dx

Optimal. Leaf size=22 3+xxlog(4)+x(3e9log(x))2

________________________________________________________________________________________

Rubi [B]  time = 0.02, antiderivative size = 55, normalized size of antiderivative = 2.50, number of steps used = 4, number of rules used = 2, integrand size = 30, number of rulesintegrand size = 0.067, Rules used = {2295, 2296} 2(13e9)x+2x+xlog2(x)+2(13e9)xlog(x)2xlog(x)+x(16e9+9e18log(4))

Antiderivative was successfully verified.

[In]

Int[1 - 6*E^9 + 9*E^18 - Log[4] + (2 - 6*E^9)*Log[x] + Log[x]^2,x]

[Out]

2*x - 2*(1 - 3*E^9)*x + x*(1 - 6*E^9 + 9*E^18 - Log[4]) - 2*x*Log[x] + 2*(1 - 3*E^9)*x*Log[x] + x*Log[x]^2

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rubi steps

integral=x(16e9+9e18log(4))+(2(13e9))log(x)dx+log2(x)dx=2(13e9)x+x(16e9+9e18log(4))+2(13e9)xlog(x)+xlog2(x)2log(x)dx=2x2(13e9)x+x(16e9+9e18log(4))2xlog(x)+2(13e9)xlog(x)+xlog2(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 27, normalized size = 1.23 x+9e18xxlog(4)6e9xlog(x)+xlog2(x)

Antiderivative was successfully verified.

[In]

Integrate[1 - 6*E^9 + 9*E^18 - Log[4] + (2 - 6*E^9)*Log[x] + Log[x]^2,x]

[Out]

x + 9*E^18*x - x*Log[4] - 6*E^9*x*Log[x] + x*Log[x]^2

________________________________________________________________________________________

fricas [A]  time = 1.03, size = 25, normalized size = 1.14 6xe9log(x)+xlog(x)2+9xe182xlog(2)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(x)^2+(-6*exp(9)+2)*log(x)-2*log(2)+9*exp(9)^2-6*exp(9)+1,x, algorithm="fricas")

[Out]

-6*x*e^9*log(x) + x*log(x)^2 + 9*x*e^18 - 2*x*log(2) + x

________________________________________________________________________________________

giac [B]  time = 0.12, size = 46, normalized size = 2.09 xlog(x)22(xlog(x)x)(3e91)+9xe186xe92xlog(2)2xlog(x)+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(x)^2+(-6*exp(9)+2)*log(x)-2*log(2)+9*exp(9)^2-6*exp(9)+1,x, algorithm="giac")

[Out]

x*log(x)^2 - 2*(x*log(x) - x)*(3*e^9 - 1) + 9*x*e^18 - 6*x*e^9 - 2*x*log(2) - 2*x*log(x) + 3*x

________________________________________________________________________________________

maple [A]  time = 0.02, size = 26, normalized size = 1.18




method result size



risch x+xln(x)26xe9ln(x)+9e18x2xln(2) 26
default x+xln(x)26xe9ln(x)+9e18x2xln(2) 28
norman xln(x)2+(1+9e182ln(2))x6xe9ln(x) 29



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(x)^2+(-6*exp(9)+2)*ln(x)-2*ln(2)+9*exp(9)^2-6*exp(9)+1,x,method=_RETURNVERBOSE)

[Out]

x+x*ln(x)^2-6*x*exp(9)*ln(x)+9*exp(18)*x-2*x*ln(2)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 45, normalized size = 2.05 (log(x)22log(x)+2)x2(xlog(x)x)(3e91)+9xe186xe92xlog(2)+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(x)^2+(-6*exp(9)+2)*log(x)-2*log(2)+9*exp(9)^2-6*exp(9)+1,x, algorithm="maxima")

[Out]

(log(x)^2 - 2*log(x) + 2)*x - 2*(x*log(x) - x)*(3*e^9 - 1) + 9*x*e^18 - 6*x*e^9 - 2*x*log(2) + x

________________________________________________________________________________________

mupad [B]  time = 4.14, size = 22, normalized size = 1.00 x(ln(x)26e9ln(x)+9e18ln(4)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(9*exp(18) - 6*exp(9) - 2*log(2) + log(x)^2 - log(x)*(6*exp(9) - 2) + 1,x)

[Out]

x*(9*exp(18) - log(4) + log(x)^2 - 6*exp(9)*log(x) + 1)

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 29, normalized size = 1.32 xlog(x)26xe9log(x)+x(2log(2)+1+9e18)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(x)**2+(-6*exp(9)+2)*ln(x)-2*ln(2)+9*exp(9)**2-6*exp(9)+1,x)

[Out]

x*log(x)**2 - 6*x*exp(9)*log(x) + x*(-2*log(2) + 1 + 9*exp(18))

________________________________________________________________________________________