3.69.35 2log(15+x)5+xdx

Optimal. Leaf size=10 log2(15+x)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 10, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 15, number of rulesintegrand size = 0.200, Rules used = {12, 2390, 2301} log2(1x+5)

Antiderivative was successfully verified.

[In]

Int[(-2*Log[-(5 + x)^(-1)])/(5 + x),x]

[Out]

Log[-(5 + x)^(-1)]^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rubi steps

integral=(2log(15+x)5+xdx)=(2Subst(log(1x)xdx,x,5+x))=log2(15+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 10, normalized size = 1.00 log2(15+x)

Antiderivative was successfully verified.

[In]

Integrate[(-2*Log[-(5 + x)^(-1)])/(5 + x),x]

[Out]

Log[-(5 + x)^(-1)]^2

________________________________________________________________________________________

fricas [A]  time = 0.57, size = 10, normalized size = 1.00 log(1x+5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*log(-1/(5+x))/(5+x),x, algorithm="fricas")

[Out]

log(-1/(x + 5))^2

________________________________________________________________________________________

giac [A]  time = 0.15, size = 10, normalized size = 1.00 log(1x+5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*log(-1/(5+x))/(5+x),x, algorithm="giac")

[Out]

log(-1/(x + 5))^2

________________________________________________________________________________________

maple [A]  time = 0.07, size = 11, normalized size = 1.10




method result size



derivativedivides ln(15+x)2 11
default ln(15+x)2 11
norman ln(15+x)2 11
risch ln(15+x)2 11



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-2*ln(-1/(5+x))/(5+x),x,method=_RETURNVERBOSE)

[Out]

ln(-1/(5+x))^2

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 23, normalized size = 2.30 log(x+5)22log(x+5)log(1x+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*log(-1/(5+x))/(5+x),x, algorithm="maxima")

[Out]

-log(x + 5)^2 - 2*log(x + 5)*log(-1/(x + 5))

________________________________________________________________________________________

mupad [B]  time = 4.55, size = 10, normalized size = 1.00 ln(1x+5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(2*log(-1/(x + 5)))/(x + 5),x)

[Out]

log(-1/(x + 5))^2

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 8, normalized size = 0.80 log(1x+5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(-2*ln(-1/(5+x))/(5+x),x)

[Out]

log(-1/(x + 5))**2

________________________________________________________________________________________