Optimal. Leaf size=24 \[ \frac {2}{\log \left (\frac {1}{5} x^3 \left (-\frac {1}{e^8}+\log \left (\frac {4}{x}\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 30, normalized size of antiderivative = 1.25, number of steps used = 2, number of rules used = 2, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.031, Rules used = {2561, 6686} \begin {gather*} \frac {2}{\log \left (-\frac {x^3-e^8 x^3 \log \left (\frac {4}{x}\right )}{5 e^8}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2561
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+2 e^8-6 e^8 \log \left (\frac {4}{x}\right )}{x \left (-1+e^8 \log \left (\frac {4}{x}\right )\right ) \log ^2\left (\frac {-x^3+e^8 x^3 \log \left (\frac {4}{x}\right )}{5 e^8}\right )} \, dx\\ &=\frac {2}{\log \left (-\frac {x^3-e^8 x^3 \log \left (\frac {4}{x}\right )}{5 e^8}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 27, normalized size = 1.12 \begin {gather*} \frac {2}{\log \left (\frac {x^3 \left (-1+e^8 \log \left (\frac {4}{x}\right )\right )}{5 e^8}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.90, size = 27, normalized size = 1.12 \begin {gather*} \frac {2}{\log \left (\frac {1}{5} \, {\left (x^{3} e^{8} \log \left (\frac {4}{x}\right ) - x^{3}\right )} e^{\left (-8\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 456, normalized size = 19.00 \begin {gather*} -\frac {2 \, {\left (6 \, e^{16} \log \relax (2) \log \left (\frac {4}{x}\right ) - 3 \, e^{16} \log \relax (x) \log \left (\frac {4}{x}\right ) - 6 \, e^{8} \log \relax (2) + 3 \, e^{8} \log \relax (x) - e^{16} \log \left (\frac {4}{x}\right ) - 3 \, e^{8} \log \left (\frac {4}{x}\right ) + e^{8} + 3\right )}}{6 \, e^{16} \log \relax (5) \log \relax (2) \log \left (\frac {4}{x}\right ) - 6 \, e^{16} \log \relax (2) \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) \log \left (\frac {4}{x}\right ) - 3 \, e^{16} \log \relax (5) \log \relax (x) \log \left (\frac {4}{x}\right ) - 18 \, e^{16} \log \relax (2) \log \relax (x) \log \left (\frac {4}{x}\right ) + 3 \, e^{16} \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) \log \relax (x) \log \left (\frac {4}{x}\right ) + 9 \, e^{16} \log \relax (x)^{2} \log \left (\frac {4}{x}\right ) - 2 \, e^{16} \log \relax (5) \log \relax (2) - 6 \, e^{8} \log \relax (5) \log \relax (2) + 2 \, e^{16} \log \relax (2) \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) + 6 \, e^{8} \log \relax (2) \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) + e^{16} \log \relax (5) \log \relax (x) + 3 \, e^{8} \log \relax (5) \log \relax (x) + 6 \, e^{16} \log \relax (2) \log \relax (x) + 18 \, e^{8} \log \relax (2) \log \relax (x) - e^{16} \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) \log \relax (x) - 3 \, e^{8} \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) \log \relax (x) - 3 \, e^{16} \log \relax (x)^{2} - 9 \, e^{8} \log \relax (x)^{2} - 3 \, e^{8} \log \relax (5) \log \left (\frac {4}{x}\right ) + 48 \, e^{16} \log \relax (2) \log \left (\frac {4}{x}\right ) + 3 \, e^{8} \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) \log \left (\frac {4}{x}\right ) - 24 \, e^{16} \log \relax (x) \log \left (\frac {4}{x}\right ) + 9 \, e^{8} \log \relax (x) \log \left (\frac {4}{x}\right ) + e^{8} \log \relax (5) - 16 \, e^{16} \log \relax (2) - 48 \, e^{8} \log \relax (2) - e^{8} \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) + 8 \, e^{16} \log \relax (x) + 21 \, e^{8} \log \relax (x) - 24 \, e^{8} \log \left (\frac {4}{x}\right ) + 8 \, e^{8} + 3 \, \log \relax (5) - 3 \, \log \left (e^{8} \log \left (\frac {4}{x}\right ) - 1\right ) - 9 \, \log \relax (x) + 24} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 30, normalized size = 1.25
method | result | size |
norman | \(\frac {2}{\ln \left (\frac {\left (x^{3} {\mathrm e}^{8} \ln \left (\frac {4}{x}\right )-x^{3}\right ) {\mathrm e}^{-8}}{5}\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 29, normalized size = 1.21 \begin {gather*} -\frac {2}{\log \relax (5) - \log \left (2 \, e^{8} \log \relax (2) - e^{8} \log \relax (x) - 1\right ) - 3 \, \log \relax (x) + 8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.97, size = 24, normalized size = 1.00 \begin {gather*} \frac {2}{\ln \left (\frac {x^3\,\ln \left (\frac {4}{x}\right )}{5}-\frac {x^3\,{\mathrm {e}}^{-8}}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 24, normalized size = 1.00 \begin {gather*} \frac {2}{\log {\left (\frac {\frac {x^{3} e^{8} \log {\left (\frac {4}{x} \right )}}{5} - \frac {x^{3}}{5}}{e^{8}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________