Optimal. Leaf size=27 \[ -x+\log \left (\frac {5 \left (x+x \log \left (4+\frac {4}{x}-x\right )\right )}{\log (\log (x))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 3.45, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 12, number of rules used = 6, integrand size = 133, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6688, 6728, 43, 6684, 2302, 29} \begin {gather*} -x+\log (x)+\log \left (\log \left (-x+\frac {4}{x}+4\right )+1\right )-\log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 43
Rule 2302
Rule 6684
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4-4 x+x^2+(-6+x) x^2 \log (x) \log (\log (x))+\left (-4-4 x+x^2\right ) \log \left (4+\frac {4}{x}-x\right ) (1+(-1+x) \log (x) \log (\log (x)))}{x \left (4+4 x-x^2\right ) \left (1+\log \left (4+\frac {4}{x}-x\right )\right ) \log (x) \log (\log (x))} \, dx\\ &=\int \left (\frac {6 x^2-x^3-4 \log \left (4+\frac {4}{x}-x\right )+5 x^2 \log \left (4+\frac {4}{x}-x\right )-x^3 \log \left (4+\frac {4}{x}-x\right )}{x \left (-4-4 x+x^2\right ) \left (1+\log \left (4+\frac {4}{x}-x\right )\right )}-\frac {1}{x \log (x) \log (\log (x))}\right ) \, dx\\ &=\int \frac {6 x^2-x^3-4 \log \left (4+\frac {4}{x}-x\right )+5 x^2 \log \left (4+\frac {4}{x}-x\right )-x^3 \log \left (4+\frac {4}{x}-x\right )}{x \left (-4-4 x+x^2\right ) \left (1+\log \left (4+\frac {4}{x}-x\right )\right )} \, dx-\int \frac {1}{x \log (x) \log (\log (x))} \, dx\\ &=\int \frac {(-6+x) x^2+\left (4-5 x^2+x^3\right ) \log \left (4+\frac {4}{x}-x\right )}{x \left (4+4 x-x^2\right ) \left (1+\log \left (4+\frac {4}{x}-x\right )\right )} \, dx-\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,\log (x)\right )\\ &=\int \left (\frac {1-x}{x}+\frac {4+x^2}{x \left (-4-4 x+x^2\right ) \left (1+\log \left (4+\frac {4}{x}-x\right )\right )}\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (\log (x))\right )\\ &=-\log (\log (\log (x)))+\int \frac {1-x}{x} \, dx+\int \frac {4+x^2}{x \left (-4-4 x+x^2\right ) \left (1+\log \left (4+\frac {4}{x}-x\right )\right )} \, dx\\ &=\log \left (1+\log \left (4+\frac {4}{x}-x\right )\right )-\log (\log (\log (x)))+\int \left (-1+\frac {1}{x}\right ) \, dx\\ &=-x+\log (x)+\log \left (1+\log \left (4+\frac {4}{x}-x\right )\right )-\log (\log (\log (x)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 0.96 \begin {gather*} -x+\log (x)+\log \left (1+\log \left (4+\frac {4}{x}-x\right )\right )-\log (\log (\log (x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 29, normalized size = 1.07 \begin {gather*} -x + \log \relax (x) + \log \left (\log \left (-\frac {x^{2} - 4 \, x - 4}{x}\right ) + 1\right ) - \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 30, normalized size = 1.11 \begin {gather*} -x + \log \relax (x) + \log \left (\log \left (-x^{2} + 4 \, x + 4\right ) - \log \relax (x) + 1\right ) - \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 53, normalized size = 1.96
method | result | size |
default | \(-\ln \left (\ln \left (\ln \relax (x )\right )\right )-\ln \left (-\frac {x^{2}-4 x -4}{x}\right )-x +\ln \left (x^{2}-4 x -4\right )+\ln \left (\ln \left (-\frac {x^{2}-4 x -4}{x}\right )+1\right )\) | \(53\) |
risch | \(\ln \relax (x )-x +\ln \left (\ln \left (x^{2}-4 x -4\right )-\frac {i \left (\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x^{2}-4 x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4 x -4\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4 x -4\right )}{x}\right )^{2}+2 \pi \mathrm {csgn}\left (\frac {i \left (x^{2}-4 x -4\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (x^{2}-4 x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x^{2}-4 x -4\right )}{x}\right )^{2}-\pi \mathrm {csgn}\left (\frac {i \left (x^{2}-4 x -4\right )}{x}\right )^{3}-2 \pi -2 i \ln \relax (x )+2 i\right )}{2}\right )-\ln \left (\ln \left (\ln \relax (x )\right )\right )\) | \(173\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 30, normalized size = 1.11 \begin {gather*} -x + \log \relax (x) + \log \left (\log \left (-x^{2} + 4 \, x + 4\right ) - \log \relax (x) + 1\right ) - \log \left (\log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 30, normalized size = 1.11 \begin {gather*} \ln \left (\ln \left (\frac {-x^2+4\,x+4}{x}\right )+1\right )-\ln \left (\ln \left (\ln \relax (x)\right )\right )-x+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.88, size = 26, normalized size = 0.96 \begin {gather*} - x + \log {\relax (x )} + \log {\left (\log {\left (\frac {- x^{2} + 4 x + 4}{x} \right )} + 1 \right )} - \log {\left (\log {\left (\log {\relax (x )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________