3.69.39 4+4xx2+(4+4xx2)log(4+4xx2x)+log(x)(6x2x3+(4+5x2x3)log(4+4xx2x))log(log(x))log(x)(4x4x2+x3+(4x4x2+x3)log(4+4xx2x))log(log(x))dx

Optimal. Leaf size=27 x+log(5(x+xlog(4+4xx))log(log(x)))

________________________________________________________________________________________

Rubi [A]  time = 3.45, antiderivative size = 26, normalized size of antiderivative = 0.96, number of steps used = 12, number of rules used = 6, integrand size = 133, number of rulesintegrand size = 0.045, Rules used = {6688, 6728, 43, 6684, 2302, 29} x+log(x)+log(log(x+4x+4)+1)log(log(log(x)))

Antiderivative was successfully verified.

[In]

Int[(4 + 4*x - x^2 + (4 + 4*x - x^2)*Log[(4 + 4*x - x^2)/x] + Log[x]*(6*x^2 - x^3 + (-4 + 5*x^2 - x^3)*Log[(4
+ 4*x - x^2)/x])*Log[Log[x]])/(Log[x]*(-4*x - 4*x^2 + x^3 + (-4*x - 4*x^2 + x^3)*Log[(4 + 4*x - x^2)/x])*Log[L
og[x]]),x]

[Out]

-x + Log[x] + Log[1 + Log[4 + 4/x - x]] - Log[Log[Log[x]]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

integral=44x+x2+(6+x)x2log(x)log(log(x))+(44x+x2)log(4+4xx)(1+(1+x)log(x)log(log(x)))x(4+4xx2)(1+log(4+4xx))log(x)log(log(x))dx=(6x2x34log(4+4xx)+5x2log(4+4xx)x3log(4+4xx)x(44x+x2)(1+log(4+4xx))1xlog(x)log(log(x)))dx=6x2x34log(4+4xx)+5x2log(4+4xx)x3log(4+4xx)x(44x+x2)(1+log(4+4xx))dx1xlog(x)log(log(x))dx=(6+x)x2+(45x2+x3)log(4+4xx)x(4+4xx2)(1+log(4+4xx))dxSubst(1xlog(x)dx,x,log(x))=(1xx+4+x2x(44x+x2)(1+log(4+4xx)))dxSubst(1xdx,x,log(log(x)))=log(log(log(x)))+1xxdx+4+x2x(44x+x2)(1+log(4+4xx))dx=log(1+log(4+4xx))log(log(log(x)))+(1+1x)dx=x+log(x)+log(1+log(4+4xx))log(log(log(x)))

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 26, normalized size = 0.96 x+log(x)+log(1+log(4+4xx))log(log(log(x)))

Antiderivative was successfully verified.

[In]

Integrate[(4 + 4*x - x^2 + (4 + 4*x - x^2)*Log[(4 + 4*x - x^2)/x] + Log[x]*(6*x^2 - x^3 + (-4 + 5*x^2 - x^3)*L
og[(4 + 4*x - x^2)/x])*Log[Log[x]])/(Log[x]*(-4*x - 4*x^2 + x^3 + (-4*x - 4*x^2 + x^3)*Log[(4 + 4*x - x^2)/x])
*Log[Log[x]]),x]

[Out]

-x + Log[x] + Log[1 + Log[4 + 4/x - x]] - Log[Log[Log[x]]]

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 29, normalized size = 1.07 x+log(x)+log(log(x24x4x)+1)log(log(log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^3+5*x^2-4)*log((-x^2+4*x+4)/x)-x^3+6*x^2)*log(x)*log(log(x))+(-x^2+4*x+4)*log((-x^2+4*x+4)/x)-
x^2+4*x+4)/((x^3-4*x^2-4*x)*log((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/log(x)/log(log(x)),x, algorithm="fricas")

[Out]

-x + log(x) + log(log(-(x^2 - 4*x - 4)/x) + 1) - log(log(log(x)))

________________________________________________________________________________________

giac [A]  time = 0.32, size = 30, normalized size = 1.11 x+log(x)+log(log(x2+4x+4)log(x)+1)log(log(log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^3+5*x^2-4)*log((-x^2+4*x+4)/x)-x^3+6*x^2)*log(x)*log(log(x))+(-x^2+4*x+4)*log((-x^2+4*x+4)/x)-
x^2+4*x+4)/((x^3-4*x^2-4*x)*log((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/log(x)/log(log(x)),x, algorithm="giac")

[Out]

-x + log(x) + log(log(-x^2 + 4*x + 4) - log(x) + 1) - log(log(log(x)))

________________________________________________________________________________________

maple [A]  time = 0.24, size = 53, normalized size = 1.96




method result size



default ln(ln(ln(x)))ln(x24x4x)x+ln(x24x4)+ln(ln(x24x4x)+1) 53
risch ln(x)x+ln(ln(x24x4)i(πcsgn(ix)csgn(i(x24x4))csgn(i(x24x4)x)πcsgn(ix)csgn(i(x24x4)x)2+2πcsgn(i(x24x4)x)2πcsgn(i(x24x4))csgn(i(x24x4)x)2πcsgn(i(x24x4)x)32π2iln(x)+2i)2)ln(ln(ln(x))) 173



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x^3+5*x^2-4)*ln((-x^2+4*x+4)/x)-x^3+6*x^2)*ln(x)*ln(ln(x))+(-x^2+4*x+4)*ln((-x^2+4*x+4)/x)-x^2+4*x+4)/
((x^3-4*x^2-4*x)*ln((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/ln(x)/ln(ln(x)),x,method=_RETURNVERBOSE)

[Out]

-ln(ln(ln(x)))-ln(-(x^2-4*x-4)/x)-x+ln(x^2-4*x-4)+ln(ln(-(x^2-4*x-4)/x)+1)

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 30, normalized size = 1.11 x+log(x)+log(log(x2+4x+4)log(x)+1)log(log(log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^3+5*x^2-4)*log((-x^2+4*x+4)/x)-x^3+6*x^2)*log(x)*log(log(x))+(-x^2+4*x+4)*log((-x^2+4*x+4)/x)-
x^2+4*x+4)/((x^3-4*x^2-4*x)*log((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/log(x)/log(log(x)),x, algorithm="maxima")

[Out]

-x + log(x) + log(log(-x^2 + 4*x + 4) - log(x) + 1) - log(log(log(x)))

________________________________________________________________________________________

mupad [B]  time = 4.39, size = 30, normalized size = 1.11 ln(ln(x2+4x+4x)+1)ln(ln(ln(x)))x+ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*x - x^2 + log((4*x - x^2 + 4)/x)*(4*x - x^2 + 4) - log(log(x))*log(x)*(x^3 - 6*x^2 + log((4*x - x^2 +
4)/x)*(x^3 - 5*x^2 + 4)) + 4)/(log(log(x))*log(x)*(4*x + log((4*x - x^2 + 4)/x)*(4*x + 4*x^2 - x^3) + 4*x^2 -
x^3)),x)

[Out]

log(log((4*x - x^2 + 4)/x) + 1) - log(log(log(x))) - x + log(x)

________________________________________________________________________________________

sympy [A]  time = 0.88, size = 26, normalized size = 0.96 x+log(x)+log(log(x2+4x+4x)+1)log(log(log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x**3+5*x**2-4)*ln((-x**2+4*x+4)/x)-x**3+6*x**2)*ln(x)*ln(ln(x))+(-x**2+4*x+4)*ln((-x**2+4*x+4)/x
)-x**2+4*x+4)/((x**3-4*x**2-4*x)*ln((-x**2+4*x+4)/x)+x**3-4*x**2-4*x)/ln(x)/ln(ln(x)),x)

[Out]

-x + log(x) + log(log((-x**2 + 4*x + 4)/x) + 1) - log(log(log(x)))

________________________________________________________________________________________