3.69.39
Optimal. Leaf size=27
________________________________________________________________________________________
Rubi [A] time = 3.45, antiderivative size = 26, normalized size of antiderivative = 0.96,
number of steps used = 12, number of rules used = 6, integrand size = 133, = 0.045, Rules used
= {6688, 6728, 43, 6684, 2302, 29}
Antiderivative was successfully verified.
[In]
Int[(4 + 4*x - x^2 + (4 + 4*x - x^2)*Log[(4 + 4*x - x^2)/x] + Log[x]*(6*x^2 - x^3 + (-4 + 5*x^2 - x^3)*Log[(4
+ 4*x - x^2)/x])*Log[Log[x]])/(Log[x]*(-4*x - 4*x^2 + x^3 + (-4*x - 4*x^2 + x^3)*Log[(4 + 4*x - x^2)/x])*Log[L
og[x]]),x]
[Out]
-x + Log[x] + Log[1 + Log[4 + 4/x - x]] - Log[Log[Log[x]]]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 6684
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6728
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 0.96
Antiderivative was successfully verified.
[In]
Integrate[(4 + 4*x - x^2 + (4 + 4*x - x^2)*Log[(4 + 4*x - x^2)/x] + Log[x]*(6*x^2 - x^3 + (-4 + 5*x^2 - x^3)*L
og[(4 + 4*x - x^2)/x])*Log[Log[x]])/(Log[x]*(-4*x - 4*x^2 + x^3 + (-4*x - 4*x^2 + x^3)*Log[(4 + 4*x - x^2)/x])
*Log[Log[x]]),x]
[Out]
-x + Log[x] + Log[1 + Log[4 + 4/x - x]] - Log[Log[Log[x]]]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 29, normalized size = 1.07
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^3+5*x^2-4)*log((-x^2+4*x+4)/x)-x^3+6*x^2)*log(x)*log(log(x))+(-x^2+4*x+4)*log((-x^2+4*x+4)/x)-
x^2+4*x+4)/((x^3-4*x^2-4*x)*log((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/log(x)/log(log(x)),x, algorithm="fricas")
[Out]
-x + log(x) + log(log(-(x^2 - 4*x - 4)/x) + 1) - log(log(log(x)))
________________________________________________________________________________________
giac [A] time = 0.32, size = 30, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^3+5*x^2-4)*log((-x^2+4*x+4)/x)-x^3+6*x^2)*log(x)*log(log(x))+(-x^2+4*x+4)*log((-x^2+4*x+4)/x)-
x^2+4*x+4)/((x^3-4*x^2-4*x)*log((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/log(x)/log(log(x)),x, algorithm="giac")
[Out]
-x + log(x) + log(log(-x^2 + 4*x + 4) - log(x) + 1) - log(log(log(x)))
________________________________________________________________________________________
maple [A] time = 0.24, size = 53, normalized size = 1.96
|
|
|
method |
result |
size |
|
|
|
default |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-x^3+5*x^2-4)*ln((-x^2+4*x+4)/x)-x^3+6*x^2)*ln(x)*ln(ln(x))+(-x^2+4*x+4)*ln((-x^2+4*x+4)/x)-x^2+4*x+4)/
((x^3-4*x^2-4*x)*ln((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/ln(x)/ln(ln(x)),x,method=_RETURNVERBOSE)
[Out]
-ln(ln(ln(x)))-ln(-(x^2-4*x-4)/x)-x+ln(x^2-4*x-4)+ln(ln(-(x^2-4*x-4)/x)+1)
________________________________________________________________________________________
maxima [A] time = 0.42, size = 30, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x^3+5*x^2-4)*log((-x^2+4*x+4)/x)-x^3+6*x^2)*log(x)*log(log(x))+(-x^2+4*x+4)*log((-x^2+4*x+4)/x)-
x^2+4*x+4)/((x^3-4*x^2-4*x)*log((-x^2+4*x+4)/x)+x^3-4*x^2-4*x)/log(x)/log(log(x)),x, algorithm="maxima")
[Out]
-x + log(x) + log(log(-x^2 + 4*x + 4) - log(x) + 1) - log(log(log(x)))
________________________________________________________________________________________
mupad [B] time = 4.39, size = 30, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(4*x - x^2 + log((4*x - x^2 + 4)/x)*(4*x - x^2 + 4) - log(log(x))*log(x)*(x^3 - 6*x^2 + log((4*x - x^2 +
4)/x)*(x^3 - 5*x^2 + 4)) + 4)/(log(log(x))*log(x)*(4*x + log((4*x - x^2 + 4)/x)*(4*x + 4*x^2 - x^3) + 4*x^2 -
x^3)),x)
[Out]
log(log((4*x - x^2 + 4)/x) + 1) - log(log(log(x))) - x + log(x)
________________________________________________________________________________________
sympy [A] time = 0.88, size = 26, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-x**3+5*x**2-4)*ln((-x**2+4*x+4)/x)-x**3+6*x**2)*ln(x)*ln(ln(x))+(-x**2+4*x+4)*ln((-x**2+4*x+4)/x
)-x**2+4*x+4)/((x**3-4*x**2-4*x)*ln((-x**2+4*x+4)/x)+x**3-4*x**2-4*x)/ln(x)/ln(ln(x)),x)
[Out]
-x + log(x) + log(log((-x**2 + 4*x + 4)/x) + 1) - log(log(log(x)))
________________________________________________________________________________________