3.69.38 4x5x28x3+10x4+(x+2x3)log(5)+(4x10x2+ex2(40100x10log(5))xlog(5))log(ex2(10ex2+x))10ex2+xdx

Optimal. Leaf size=23 x(45xlog(5))log(10+ex2x)

________________________________________________________________________________________

Rubi [F]  time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 4x5x28x3+10x4+(x+2x3)log(5)+(4x10x2+ex2(40100x10log(5))xlog(5))log(ex2(10ex2+x))10ex2+xdx

Verification is not applicable to the result.

[In]

Int[(4*x - 5*x^2 - 8*x^3 + 10*x^4 + (-x + 2*x^3)*Log[5] + (4*x - 10*x^2 + E^x^2*(40 - 100*x - 10*Log[5]) - x*L
og[5])*Log[(10*E^x^2 + x)/E^x^2])/(10*E^x^2 + x),x]

[Out]

-1/20*((4 - 10*x - Log[5])^2*Log[10 + x/E^x^2]) + ((4 - Log[5])^2*Defer[Int][(10*E^x^2 + x)^(-1), x])/20 - 5*D
efer[Int][x^2/(10*E^x^2 + x), x] + ((34 + 8*Log[5] - Log[5]^2)*Defer[Int][x^2/(10*E^x^2 + x), x])/10 + 2*(4 -
Log[5])*Defer[Int][x^3/(10*E^x^2 + x), x] - (8 - Log[25])*Defer[Int][x^3/(10*E^x^2 + x), x]

Rubi steps

integral=(x(45x+10x3log(5)x2(8log(25)))10ex2+x(4+10x+log(5))log(10+ex2x))dx=x(45x+10x3log(5)x2(8log(25)))10ex2+xdx(4+10x+log(5))log(10+ex2x)dx=120(410xlog(5))2log(10+ex2x)+120(12x2)(410xlog(5))210ex2+xdx+(5x210ex2+x+10x410ex2+xx(4+log(5))10ex2+x+x3(8+log(25))10ex2+x)dx=120(410xlog(5))2log(10+ex2x)+120(200x410ex2+x+20x(4+log(5))10ex2+x40x3(4+log(5))10ex2+x+(4+log(5))210ex2+x2x2(348log(5)+log2(5))10ex2+x)dx5x210ex2+xdx+10x410ex2+xdx+(4log(5))x10ex2+xdx+(8+log(25))x310ex2+xdx=120(410xlog(5))2log(10+ex2x)5x210ex2+xdx+(4log(5))x10ex2+xdx+(2(4log(5)))x310ex2+xdx+120(4log(5))2110ex2+xdx+(4+log(5))x10ex2+xdx+110(34+8log(5)log2(5))x210ex2+xdx+(8+log(25))x310ex2+xdx

________________________________________________________________________________________

Mathematica [A]  time = 0.32, size = 22, normalized size = 0.96 x(4+5x+log(5))log(10+ex2x)

Antiderivative was successfully verified.

[In]

Integrate[(4*x - 5*x^2 - 8*x^3 + 10*x^4 + (-x + 2*x^3)*Log[5] + (4*x - 10*x^2 + E^x^2*(40 - 100*x - 10*Log[5])
 - x*Log[5])*Log[(10*E^x^2 + x)/E^x^2])/(10*E^x^2 + x),x]

[Out]

-(x*(-4 + 5*x + Log[5])*Log[10 + x/E^x^2])

________________________________________________________________________________________

fricas [A]  time = 1.11, size = 31, normalized size = 1.35 (5x2+xlog(5)4x)log((x+10e(x2))e(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-10*log(5)-100*x+40)*exp(x^2)-x*log(5)-10*x^2+4*x)*log((10*exp(x^2)+x)/exp(x^2))+(2*x^3-x)*log(5)
+10*x^4-8*x^3-5*x^2+4*x)/(10*exp(x^2)+x),x, algorithm="fricas")

[Out]

-(5*x^2 + x*log(5) - 4*x)*log((x + 10*e^(x^2))*e^(-x^2))

________________________________________________________________________________________

giac [B]  time = 0.19, size = 57, normalized size = 2.48 5x4+x3log(5)4x35x2log(x+10e(x2))xlog(5)log(x+10e(x2))+4xlog(x+10e(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-10*log(5)-100*x+40)*exp(x^2)-x*log(5)-10*x^2+4*x)*log((10*exp(x^2)+x)/exp(x^2))+(2*x^3-x)*log(5)
+10*x^4-8*x^3-5*x^2+4*x)/(10*exp(x^2)+x),x, algorithm="giac")

[Out]

5*x^4 + x^3*log(5) - 4*x^3 - 5*x^2*log(x + 10*e^(x^2)) - x*log(5)*log(x + 10*e^(x^2)) + 4*x*log(x + 10*e^(x^2)
)

________________________________________________________________________________________

maple [B]  time = 0.18, size = 47, normalized size = 2.04




method result size



norman (ln(5)+4)xln((10ex2+x)ex2)5ln((10ex2+x)ex2)x2 47
risch (xln(5)+5x24x)ln(ex2)ln(5)xln(10ex2+x)5x2ln(10ex2+x)+4xln(10ex2+x)+iπln(5)xcsgn(i(10ex2+x))csgn(iex2)csgn(iex2(10ex2+x))2+2iπxcsgn(i(10ex2+x))csgn(iex2(10ex2+x))22iπxcsgn(iex2(10ex2+x))3+5iπx2csgn(iex2(10ex2+x))32+iπln(5)xcsgn(iex2(10ex2+x))32iπln(5)xcsgn(iex2)csgn(iex2(10ex2+x))22+2iπxcsgn(iex2)csgn(iex2(10ex2+x))22iπxcsgn(i(10ex2+x))csgn(iex2)csgn(iex2(10ex2+x))+5iπx2csgn(i(10ex2+x))csgn(iex2)csgn(iex2(10ex2+x))2iπln(5)xcsgn(i(10ex2+x))csgn(iex2(10ex2+x))225iπx2csgn(i(10ex2+x))csgn(iex2(10ex2+x))225iπx2csgn(iex2)csgn(iex2(10ex2+x))22 503



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-10*ln(5)-100*x+40)*exp(x^2)-x*ln(5)-10*x^2+4*x)*ln((10*exp(x^2)+x)/exp(x^2))+(2*x^3-x)*ln(5)+10*x^4-8*
x^3-5*x^2+4*x)/(10*exp(x^2)+x),x,method=_RETURNVERBOSE)

[Out]

(-ln(5)+4)*x*ln((10*exp(x^2)+x)/exp(x^2))-5*ln((10*exp(x^2)+x)/exp(x^2))*x^2

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 37, normalized size = 1.61 5x4+x3(log(5)4)(5x2+x(log(5)4))log(x+10e(x2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-10*log(5)-100*x+40)*exp(x^2)-x*log(5)-10*x^2+4*x)*log((10*exp(x^2)+x)/exp(x^2))+(2*x^3-x)*log(5)
+10*x^4-8*x^3-5*x^2+4*x)/(10*exp(x^2)+x),x, algorithm="maxima")

[Out]

5*x^4 + x^3*(log(5) - 4) - (5*x^2 + x*(log(5) - 4))*log(x + 10*e^(x^2))

________________________________________________________________________________________

mupad [B]  time = 4.38, size = 29, normalized size = 1.26 (5x2+(ln(5)4)x)(ln(x+10ex2)x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(exp(-x^2)*(x + 10*exp(x^2)))*(x*log(5) - 4*x + exp(x^2)*(100*x + 10*log(5) - 40) + 10*x^2) - 4*x + 5
*x^2 + 8*x^3 - 10*x^4 + log(5)*(x - 2*x^3))/(x + 10*exp(x^2)),x)

[Out]

-(x*(log(5) - 4) + 5*x^2)*(log(x + 10*exp(x^2)) - x^2)

________________________________________________________________________________________

sympy [A]  time = 0.74, size = 27, normalized size = 1.17 (5x2xlog(5)+4x)log((x+10ex2)ex2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-10*ln(5)-100*x+40)*exp(x**2)-x*ln(5)-10*x**2+4*x)*ln((10*exp(x**2)+x)/exp(x**2))+(2*x**3-x)*ln(5
)+10*x**4-8*x**3-5*x**2+4*x)/(10*exp(x**2)+x),x)

[Out]

(-5*x**2 - x*log(5) + 4*x)*log((x + 10*exp(x**2))*exp(-x**2))

________________________________________________________________________________________