3.69.51 e(4x+3x2+4x3)log(2)3xlog(2)log(4)((4+6x+12x2)log(2)3log(2)log(4))dx

Optimal. Leaf size=20 2x(4(1+x2)3(x+log(4)))

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 26, normalized size of antiderivative = 1.30, number of steps used = 1, number of rules used = 1, integrand size = 48, number of rulesintegrand size = 0.021, Rules used = {6706} 24x3+3x2+4xe3xlog(2)log(4)

Antiderivative was successfully verified.

[In]

Int[E^((4*x + 3*x^2 + 4*x^3)*Log[2] - 3*x*Log[2]*Log[4])*((4 + 6*x + 12*x^2)*Log[2] - 3*Log[2]*Log[4]),x]

[Out]

2^(4*x + 3*x^2 + 4*x^3)/E^(3*x*Log[2]*Log[4])

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=24x+3x2+4x3e3xlog(2)log(4)

________________________________________________________________________________________

Mathematica [F]  time = 0.48, size = 0, normalized size = 0.00 e(4x+3x2+4x3)log(2)3xlog(2)log(4)((4+6x+12x2)log(2)3log(2)log(4))dx

Verification is not applicable to the result.

[In]

Integrate[E^((4*x + 3*x^2 + 4*x^3)*Log[2] - 3*x*Log[2]*Log[4])*((4 + 6*x + 12*x^2)*Log[2] - 3*Log[2]*Log[4]),x
]

[Out]

Integrate[E^((4*x + 3*x^2 + 4*x^3)*Log[2] - 3*x*Log[2]*Log[4])*((4 + 6*x + 12*x^2)*Log[2] - 3*Log[2]*Log[4]),
x]

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 26, normalized size = 1.30 e(6xlog(2)2+(4x3+3x2+4x)log(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-6*log(2)^2+(12*x^2+6*x+4)*log(2))*exp(-6*x*log(2)^2+(4*x^3+3*x^2+4*x)*log(2)),x, algorithm="fricas
")

[Out]

e^(-6*x*log(2)^2 + (4*x^3 + 3*x^2 + 4*x)*log(2))

________________________________________________________________________________________

giac [A]  time = 0.25, size = 28, normalized size = 1.40 e(4x3log(2)+3x2log(2)6xlog(2)2+4xlog(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-6*log(2)^2+(12*x^2+6*x+4)*log(2))*exp(-6*x*log(2)^2+(4*x^3+3*x^2+4*x)*log(2)),x, algorithm="giac")

[Out]

e^(4*x^3*log(2) + 3*x^2*log(2) - 6*x*log(2)^2 + 4*x*log(2))

________________________________________________________________________________________

maple [A]  time = 0.04, size = 24, normalized size = 1.20




method result size



risch 2x(4x2+3x+4)e6xln(2)2 24
derivativedivides e6xln(2)2+(4x3+3x2+4x)ln(2) 27
default e6xln(2)2+(4x3+3x2+4x)ln(2) 27
norman e6xln(2)2+(4x3+3x2+4x)ln(2) 27
gosper e4x3ln(2)6xln(2)2+3x2ln(2)+4xln(2) 29



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-6*ln(2)^2+(12*x^2+6*x+4)*ln(2))*exp(-6*x*ln(2)^2+(4*x^3+3*x^2+4*x)*ln(2)),x,method=_RETURNVERBOSE)

[Out]

2^(x*(4*x^2+3*x+4))*exp(-6*x*ln(2)^2)

________________________________________________________________________________________

maxima [A]  time = 0.53, size = 28, normalized size = 1.40 e(4x3log(2)+3x2log(2)6xlog(2)2+4xlog(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-6*log(2)^2+(12*x^2+6*x+4)*log(2))*exp(-6*x*log(2)^2+(4*x^3+3*x^2+4*x)*log(2)),x, algorithm="maxima
")

[Out]

e^(4*x^3*log(2) + 3*x^2*log(2) - 6*x*log(2)^2 + 4*x*log(2))

________________________________________________________________________________________

mupad [B]  time = 4.28, size = 28, normalized size = 1.40 24x23x224x3e6xln(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(log(2)*(4*x + 3*x^2 + 4*x^3) - 6*x*log(2)^2)*(log(2)*(6*x + 12*x^2 + 4) - 6*log(2)^2),x)

[Out]

2^(4*x)*2^(3*x^2)*2^(4*x^3)*exp(-6*x*log(2)^2)

________________________________________________________________________________________

sympy [A]  time = 0.15, size = 26, normalized size = 1.30 e6xlog(2)2+(4x3+3x2+4x)log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-6*ln(2)**2+(12*x**2+6*x+4)*ln(2))*exp(-6*x*ln(2)**2+(4*x**3+3*x**2+4*x)*ln(2)),x)

[Out]

exp(-6*x*log(2)**2 + (4*x**3 + 3*x**2 + 4*x)*log(2))

________________________________________________________________________________________