Optimal. Leaf size=20 \[ 2^{x \left (4 \left (1+x^2\right )-3 (-x+\log (4))\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 26, normalized size of antiderivative = 1.30, number of steps used = 1, number of rules used = 1, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6706} \begin {gather*} 2^{4 x^3+3 x^2+4 x} e^{-3 x \log (2) \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2^{4 x+3 x^2+4 x^3} e^{-3 x \log (2) \log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.48, size = 0, normalized size = 0.00 \begin {gather*} \int e^{\left (4 x+3 x^2+4 x^3\right ) \log (2)-3 x \log (2) \log (4)} \left (\left (4+6 x+12 x^2\right ) \log (2)-3 \log (2) \log (4)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 26, normalized size = 1.30 \begin {gather*} e^{\left (-6 \, x \log \relax (2)^{2} + {\left (4 \, x^{3} + 3 \, x^{2} + 4 \, x\right )} \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 28, normalized size = 1.40 \begin {gather*} e^{\left (4 \, x^{3} \log \relax (2) + 3 \, x^{2} \log \relax (2) - 6 \, x \log \relax (2)^{2} + 4 \, x \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.20
method | result | size |
risch | \(2^{x \left (4 x^{2}+3 x +4\right )} {\mathrm e}^{-6 x \ln \relax (2)^{2}}\) | \(24\) |
derivativedivides | \({\mathrm e}^{-6 x \ln \relax (2)^{2}+\left (4 x^{3}+3 x^{2}+4 x \right ) \ln \relax (2)}\) | \(27\) |
default | \({\mathrm e}^{-6 x \ln \relax (2)^{2}+\left (4 x^{3}+3 x^{2}+4 x \right ) \ln \relax (2)}\) | \(27\) |
norman | \({\mathrm e}^{-6 x \ln \relax (2)^{2}+\left (4 x^{3}+3 x^{2}+4 x \right ) \ln \relax (2)}\) | \(27\) |
gosper | \({\mathrm e}^{4 x^{3} \ln \relax (2)-6 x \ln \relax (2)^{2}+3 x^{2} \ln \relax (2)+4 x \ln \relax (2)}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 28, normalized size = 1.40 \begin {gather*} e^{\left (4 \, x^{3} \log \relax (2) + 3 \, x^{2} \log \relax (2) - 6 \, x \log \relax (2)^{2} + 4 \, x \log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 28, normalized size = 1.40 \begin {gather*} 2^{4\,x}\,2^{3\,x^2}\,2^{4\,x^3}\,{\mathrm {e}}^{-6\,x\,{\ln \relax (2)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 26, normalized size = 1.30 \begin {gather*} e^{- 6 x \log {\relax (2 )}^{2} + \left (4 x^{3} + 3 x^{2} + 4 x\right ) \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________