3.69.52
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [A] time = 1.62, antiderivative size = 36, normalized size of antiderivative = 1.38,
number of steps used = 15, number of rules used = 7, integrand size = 73, = 0.096, Rules used
= {6, 6741, 6742, 2234, 2205, 2240, 2241}
Antiderivative was successfully verified.
[In]
Int[E^(-18 - 2*E^6 - 2*E^3*(2 - 2*x) + 6*x - 2*x^2)*(1 - E^(18 + 2*E^6 + 2*E^3*(2 - 2*x) - 6*x + 2*x^2) + 6*x
+ 4*E^3*x - 4*x^2),x]
[Out]
-x + E^(-2*(9 + 2*E^3 + E^6) + 2*(3 + 2*E^3)*x - 2*x^2)*x
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 2205
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]
Rule 2234
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[F^(a - b^2/(4*c)), Int[F^((b + 2*c*x)^2/(4*c))
, x], x] /; FreeQ[{F, a, b, c}, x]
Rule 2240
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(e*F^(a + b*x + c*x^2))/(
2*c*Log[F]), x] - Dist[(b*e - 2*c*d)/(2*c), Int[F^(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&
NeQ[b*e - 2*c*d, 0]
Rule 2241
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*F^(a + b*x + c*x^2))/(2*c*Log[F]), x] + (-Dist[(b*e - 2*c*d)/(2*c), Int[(d + e*x)^(m - 1)*F^(a + b*x + c*x^2)
, x], x] - Dist[((m - 1)*e^2)/(2*c*Log[F]), Int[(d + e*x)^(m - 2)*F^(a + b*x + c*x^2), x], x]) /; FreeQ[{F, a,
b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 27, normalized size = 1.04
Antiderivative was successfully verified.
[In]
Integrate[E^(-18 - 2*E^6 - 2*E^3*(2 - 2*x) + 6*x - 2*x^2)*(1 - E^(18 + 2*E^6 + 2*E^3*(2 - 2*x) - 6*x + 2*x^2)
+ 6*x + 4*E^3*x - 4*x^2),x]
[Out]
(-1 + E^(-2*(9 + E^6 - 2*E^3*(-1 + x) - 3*x + x^2)))*x
________________________________________________________________________________________
fricas [B] time = 0.58, size = 52, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(exp(3)^2+(-2*x+2)*exp(3)+x^2-3*x+9)^2+4*x*exp(3)-4*x^2+6*x+1)/exp(exp(3)^2+(-2*x+2)*exp(3)+x^2
-3*x+9)^2,x, algorithm="fricas")
[Out]
-(x*e^(2*x^2 - 4*(x - 1)*e^3 - 6*x + 2*e^6 + 18) - x)*e^(-2*x^2 + 4*(x - 1)*e^3 + 6*x - 2*e^6 - 18)
________________________________________________________________________________________
giac [C] time = 0.29, size = 134, normalized size = 5.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(exp(3)^2+(-2*x+2)*exp(3)+x^2-3*x+9)^2+4*x*exp(3)-4*x^2+6*x+1)/exp(exp(3)^2+(-2*x+2)*exp(3)+x^2
-3*x+9)^2,x, algorithm="giac")
[Out]
1/2*sqrt(2)*sqrt(pi)*(2*e^3 + 3)*erf(1/2*sqrt(2)*(2*x - 2*e^3 - 3))*e^(2*e^3 - 21/2) - 1/2*sqrt(2)*sqrt(pi)*(2
*e^6 + 3*e^3)*erf(1/2*sqrt(2)*(2*x - 2*e^3 - 3))*e^(2*e^3 - 27/2) + (x + e^3)*e^(-2*x^2 + 4*x*e^3 + 6*x - 2*e^
6 - 4*e^3 - 18) - x - e^(-2*x^2 + 4*x*e^3 + 6*x - 2*e^6 - 4*e^3 - 15)
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.19
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-exp(exp(3)^2+(-2*x+2)*exp(3)+x^2-3*x+9)^2+4*x*exp(3)-4*x^2+6*x+1)/exp(exp(3)^2+(-2*x+2)*exp(3)+x^2-3*x+9
)^2,x,method=_RETURNVERBOSE)
[Out]
-x+x*exp(4*x*exp(3)-2*x^2-4*exp(3)-2*exp(6)+6*x-18)
________________________________________________________________________________________
maxima [C] time = 0.58, size = 397, normalized size = 15.27
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(exp(3)^2+(-2*x+2)*exp(3)+x^2-3*x+9)^2+4*x*exp(3)-4*x^2+6*x+1)/exp(exp(3)^2+(-2*x+2)*exp(3)+x^2
-3*x+9)^2,x, algorithm="maxima")
[Out]
1/4*sqrt(2)*sqrt(pi)*erf(sqrt(2)*x - 1/2*sqrt(2)*(2*e^3 + 3))*e^(1/2*(2*e^3 + 3)^2 - 2*e^6 - 4*e^3 - 18) - 1/2
*I*sqrt(2)*(I*sqrt(pi)*(2*x - 2*e^3 - 3)*(erf(sqrt(1/2)*sqrt((2*x - 2*e^3 - 3)^2)) - 1)*(2*e^3 + 3)/sqrt((2*x
- 2*e^3 - 3)^2) - I*sqrt(2)*e^(-1/2*(2*x - 2*e^3 - 3)^2))*e^(1/2*(2*e^3 + 3)^2 - 2*e^6 - 4*e^3 - 15) + 1/4*I*s
qrt(2)*(I*sqrt(pi)*(2*x - 2*e^3 - 3)*(erf(sqrt(1/2)*sqrt((2*x - 2*e^3 - 3)^2)) - 1)*(2*e^3 + 3)^2/sqrt((2*x -
2*e^3 - 3)^2) - 2*I*sqrt(2)*(2*e^3 + 3)*e^(-1/2*(2*x - 2*e^3 - 3)^2) - 2*I*(2*x - 2*e^3 - 3)^3*gamma(3/2, 1/2*
(2*x - 2*e^3 - 3)^2)/((2*x - 2*e^3 - 3)^2)^(3/2))*e^(1/2*(2*e^3 + 3)^2 - 2*e^6 - 4*e^3 - 18) - 3/4*I*sqrt(2)*(
I*sqrt(pi)*(2*x - 2*e^3 - 3)*(erf(sqrt(1/2)*sqrt((2*x - 2*e^3 - 3)^2)) - 1)*(2*e^3 + 3)/sqrt((2*x - 2*e^3 - 3)
^2) - I*sqrt(2)*e^(-1/2*(2*x - 2*e^3 - 3)^2))*e^(1/2*(2*e^3 + 3)^2 - 2*e^6 - 4*e^3 - 18) - x
________________________________________________________________________________________
mupad [B] time = 0.21, size = 34, normalized size = 1.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(exp(6*x - 2*exp(6) - 2*x^2 + 2*exp(3)*(2*x - 2) - 18)*(6*x - exp(2*exp(6) - 6*x + 2*x^2 - 2*exp(3)*(2*x -
2) + 18) + 4*x*exp(3) - 4*x^2 + 1),x)
[Out]
x*exp(-4*exp(3))*exp(-2*exp(6))*exp(6*x)*exp(-18)*exp(-2*x^2)*exp(4*x*exp(3)) - x
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-exp(exp(3)**2+(-2*x+2)*exp(3)+x**2-3*x+9)**2+4*x*exp(3)-4*x**2+6*x+1)/exp(exp(3)**2+(-2*x+2)*exp(3
)+x**2-3*x+9)**2,x)
[Out]
x*exp(-2*x**2 + 6*x - 2*(2 - 2*x)*exp(3) - 2*exp(6) - 18) - x
________________________________________________________________________________________