Optimal. Leaf size=26 \[ 5-x+e^{-16-2 \left (1+e^3-x\right )^2+2 x} x \]
________________________________________________________________________________________
Rubi [A] time = 1.62, antiderivative size = 36, normalized size of antiderivative = 1.38, number of steps used = 15, number of rules used = 7, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.096, Rules used = {6, 6741, 6742, 2234, 2205, 2240, 2241} \begin {gather*} x \exp \left (-2 x^2+2 \left (3+2 e^3\right ) x-2 \left (9+2 e^3+e^6\right )\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2205
Rule 2234
Rule 2240
Rule 2241
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-18-2 e^6-2 e^3 (2-2 x)+6 x-2 x^2} \left (1-e^{18+2 e^6+2 e^3 (2-2 x)-6 x+2 x^2}+\left (6+4 e^3\right ) x-4 x^2\right ) \, dx\\ &=\int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \left (1-e^{18+2 e^6+2 e^3 (2-2 x)-6 x+2 x^2}+\left (6+4 e^3\right ) x-4 x^2\right ) \, dx\\ &=\int \left (-1+\exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right )+2 \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \left (3+2 e^3\right ) x-4 \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x^2\right ) \, dx\\ &=-x-4 \int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x^2 \, dx+\left (2 \left (3+2 e^3\right )\right ) \int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x \, dx+\int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \, dx\\ &=-\frac {1}{2} \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \left (3+2 e^3\right )-x+\exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x+e^{-\frac {27}{2}+2 e^3} \int e^{-\frac {1}{8} \left (2 \left (3+2 e^3\right )-4 x\right )^2} \, dx-\left (2 \left (3+2 e^3\right )\right ) \int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x \, dx+\left (3+2 e^3\right )^2 \int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \, dx-\int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \, dx\\ &=-x+\exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x-\frac {1}{2} e^{-\frac {27}{2}+2 e^3} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {3+2 e^3-2 x}{\sqrt {2}}\right )-e^{-\frac {27}{2}+2 e^3} \int e^{-\frac {1}{8} \left (2 \left (3+2 e^3\right )-4 x\right )^2} \, dx-\left (3+2 e^3\right )^2 \int \exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) \, dx+\left (e^{-\frac {27}{2}+2 e^3} \left (3+2 e^3\right )^2\right ) \int e^{-\frac {1}{8} \left (2 \left (3+2 e^3\right )-4 x\right )^2} \, dx\\ &=-x+\exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x-\frac {1}{2} e^{-\frac {27}{2}+2 e^3} \left (3+2 e^3\right )^2 \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {3+2 e^3-2 x}{\sqrt {2}}\right )-\left (e^{-\frac {27}{2}+2 e^3} \left (3+2 e^3\right )^2\right ) \int e^{-\frac {1}{8} \left (2 \left (3+2 e^3\right )-4 x\right )^2} \, dx\\ &=-x+\exp \left (-2 \left (9+2 e^3+e^6\right )+2 \left (3+2 e^3\right ) x-2 x^2\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.32, size = 27, normalized size = 1.04 \begin {gather*} \left (-1+e^{-2 \left (9+e^6-2 e^3 (-1+x)-3 x+x^2\right )}\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 52, normalized size = 2.00 \begin {gather*} -{\left (x e^{\left (2 \, x^{2} - 4 \, {\left (x - 1\right )} e^{3} - 6 \, x + 2 \, e^{6} + 18\right )} - x\right )} e^{\left (-2 \, x^{2} + 4 \, {\left (x - 1\right )} e^{3} + 6 \, x - 2 \, e^{6} - 18\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.29, size = 134, normalized size = 5.15 \begin {gather*} \frac {1}{2} \, \sqrt {2} \sqrt {\pi } {\left (2 \, e^{3} + 3\right )} \operatorname {erf}\left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x - 2 \, e^{3} - 3\right )}\right ) e^{\left (2 \, e^{3} - \frac {21}{2}\right )} - \frac {1}{2} \, \sqrt {2} \sqrt {\pi } {\left (2 \, e^{6} + 3 \, e^{3}\right )} \operatorname {erf}\left (\frac {1}{2} \, \sqrt {2} {\left (2 \, x - 2 \, e^{3} - 3\right )}\right ) e^{\left (2 \, e^{3} - \frac {27}{2}\right )} + {\left (x + e^{3}\right )} e^{\left (-2 \, x^{2} + 4 \, x e^{3} + 6 \, x - 2 \, e^{6} - 4 \, e^{3} - 18\right )} - x - e^{\left (-2 \, x^{2} + 4 \, x e^{3} + 6 \, x - 2 \, e^{6} - 4 \, e^{3} - 15\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 31, normalized size = 1.19
method | result | size |
risch | \(-x +x \,{\mathrm e}^{4 x \,{\mathrm e}^{3}-2 x^{2}-4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}+6 x -18}\) | \(31\) |
default | \(-x -\frac {3 \,{\mathrm e}^{-2 x^{2}+\left (4 \,{\mathrm e}^{3}+6\right ) x -4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-18}}{2}+\frac {3 \left (4 \,{\mathrm e}^{3}+6\right ) \sqrt {\pi }\, {\mathrm e}^{-4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-18+\frac {\left (4 \,{\mathrm e}^{3}+6\right )^{2}}{8}} \sqrt {2}\, \erf \left (\sqrt {2}\, x -\frac {\left (4 \,{\mathrm e}^{3}+6\right ) \sqrt {2}}{4}\right )}{8}+x \,{\mathrm e}^{-2 x^{2}+\left (4 \,{\mathrm e}^{3}+6\right ) x -4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-18}-\left (4 \,{\mathrm e}^{3}+6\right ) \left (-\frac {{\mathrm e}^{-2 x^{2}+\left (4 \,{\mathrm e}^{3}+6\right ) x -4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-18}}{4}+\frac {\left (4 \,{\mathrm e}^{3}+6\right ) \sqrt {\pi }\, {\mathrm e}^{-4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-18+\frac {\left (4 \,{\mathrm e}^{3}+6\right )^{2}}{8}} \sqrt {2}\, \erf \left (\sqrt {2}\, x -\frac {\left (4 \,{\mathrm e}^{3}+6\right ) \sqrt {2}}{4}\right )}{16}\right )-{\mathrm e}^{-2 x^{2}+\left (4 \,{\mathrm e}^{3}+6\right ) x -4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-15}+\frac {\left (4 \,{\mathrm e}^{3}+6\right ) \sqrt {\pi }\, {\mathrm e}^{-4 \,{\mathrm e}^{3}-2 \,{\mathrm e}^{6}-15+\frac {\left (4 \,{\mathrm e}^{3}+6\right )^{2}}{8}} \sqrt {2}\, \erf \left (\sqrt {2}\, x -\frac {\left (4 \,{\mathrm e}^{3}+6\right ) \sqrt {2}}{4}\right )}{4}\) | \(277\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 397, normalized size = 15.27 \begin {gather*} \frac {1}{4} \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\sqrt {2} x - \frac {1}{2} \, \sqrt {2} {\left (2 \, e^{3} + 3\right )}\right ) e^{\left (\frac {1}{2} \, {\left (2 \, e^{3} + 3\right )}^{2} - 2 \, e^{6} - 4 \, e^{3} - 18\right )} - \frac {1}{2} i \, \sqrt {2} {\left (\frac {i \, \sqrt {\pi } {\left (2 \, x - 2 \, e^{3} - 3\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{2}} \sqrt {{\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{3} + 3\right )}}{\sqrt {{\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}}} - i \, \sqrt {2} e^{\left (-\frac {1}{2} \, {\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}\right )}\right )} e^{\left (\frac {1}{2} \, {\left (2 \, e^{3} + 3\right )}^{2} - 2 \, e^{6} - 4 \, e^{3} - 15\right )} + \frac {1}{4} i \, \sqrt {2} {\left (\frac {i \, \sqrt {\pi } {\left (2 \, x - 2 \, e^{3} - 3\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{2}} \sqrt {{\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{3} + 3\right )}^{2}}{\sqrt {{\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}}} - 2 i \, \sqrt {2} {\left (2 \, e^{3} + 3\right )} e^{\left (-\frac {1}{2} \, {\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}\right )} - \frac {2 i \, {\left (2 \, x - 2 \, e^{3} - 3\right )}^{3} \Gamma \left (\frac {3}{2}, \frac {1}{2} \, {\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}\right )}{{\left ({\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}\right )}^{\frac {3}{2}}}\right )} e^{\left (\frac {1}{2} \, {\left (2 \, e^{3} + 3\right )}^{2} - 2 \, e^{6} - 4 \, e^{3} - 18\right )} - \frac {3}{4} i \, \sqrt {2} {\left (\frac {i \, \sqrt {\pi } {\left (2 \, x - 2 \, e^{3} - 3\right )} {\left (\operatorname {erf}\left (\sqrt {\frac {1}{2}} \sqrt {{\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}}\right ) - 1\right )} {\left (2 \, e^{3} + 3\right )}}{\sqrt {{\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}}} - i \, \sqrt {2} e^{\left (-\frac {1}{2} \, {\left (2 \, x - 2 \, e^{3} - 3\right )}^{2}\right )}\right )} e^{\left (\frac {1}{2} \, {\left (2 \, e^{3} + 3\right )}^{2} - 2 \, e^{6} - 4 \, e^{3} - 18\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.21, size = 34, normalized size = 1.31 \begin {gather*} x\,{\mathrm {e}}^{-4\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-2\,{\mathrm {e}}^6}\,{\mathrm {e}}^{6\,x}\,{\mathrm {e}}^{-18}\,{\mathrm {e}}^{-2\,x^2}\,{\mathrm {e}}^{4\,x\,{\mathrm {e}}^3}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 29, normalized size = 1.12 \begin {gather*} x e^{- 2 x^{2} + 6 x - 2 \left (2 - 2 x\right ) e^{3} - 2 e^{6} - 18} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________