3.69.57
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 129, normalized size of antiderivative = 4.30,
number of steps used = 1, number of rules used = 1, integrand size = 98, = 0.010, Rules used =
{2288}
Antiderivative was successfully verified.
[In]
Int[(E^Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]^2*(-30*E*x^3 - E*x*Log[x] + (E*(16 - 4*x) + E*(-32
+ 8*x)*Log[x])*Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]))/(30*x^3 + x*Log[x]),x]
[Out]
(E^Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]^2*(E*(4 - x) - 2*E*(4 - x)*Log[x])*(900*x^4 + 60*x^2*Lo
g[x] + Log[x]^2))/(x^4*(30*x^3 + x*Log[x])*((30*x + 1800*x^3 + Log[x]/x + 60*x*Log[x])/x^4 - (2*(900*x^4 + 60*
x^2*Log[x] + Log[x]^2))/x^5))
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 29, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[(E^Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]^2*(-30*E*x^3 - E*x*Log[x] + (E*(16 - 4*x) + E
*(-32 + 8*x)*Log[x])*Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]))/(30*x^3 + x*Log[x]),x]
[Out]
-(E^(1 + Log[(30*x^2 + Log[x])^2/(100*x^4)]^2)*(-4 + x))
________________________________________________________________________________________
fricas [A] time = 0.53, size = 33, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x-32)*exp(1)*log(x)+(-4*x+16)*exp(1))*log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)-x*exp(1)*
log(x)-30*x^3*exp(1))*exp(log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)^2)/(x*log(x)+30*x^3),x, algorithm="f
ricas")
[Out]
-(x - 4)*e^(log(1/100*(900*x^4 + 60*x^2*log(x) + log(x)^2)/x^4)^2 + 1)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x-32)*exp(1)*log(x)+(-4*x+16)*exp(1))*log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)-x*exp(1)*
log(x)-30*x^3*exp(1))*exp(log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)^2)/(x*log(x)+30*x^3),x, algorithm="g
iac")
[Out]
integrate(-(30*x^3*e + x*e*log(x) - 4*(2*(x - 4)*e*log(x) - (x - 4)*e)*log(1/100*(900*x^4 + 60*x^2*log(x) + lo
g(x)^2)/x^4))*e^(log(1/100*(900*x^4 + 60*x^2*log(x) + log(x)^2)/x^4)^2)/(30*x^3 + x*log(x)), x)
________________________________________________________________________________________
maple [C] time = 0.86, size = 7474, normalized size = 249.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((8*x-32)*exp(1)*ln(x)+(-4*x+16)*exp(1))*ln(1/100*(ln(x)^2+60*x^2*ln(x)+900*x^4)/x^4)-x*exp(1)*ln(x)-30*x
^3*exp(1))*exp(ln(1/100*(ln(x)^2+60*x^2*ln(x)+900*x^4)/x^4)^2)/(x*ln(x)+30*x^3),x,method=_RETURNVERBOSE)
[Out]
result too large to display
________________________________________________________________________________________
maxima [B] time = 0.67, size = 123, normalized size = 4.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x-32)*exp(1)*log(x)+(-4*x+16)*exp(1))*log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)-x*exp(1)*
log(x)-30*x^3*exp(1))*exp(log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)^2)/(x*log(x)+30*x^3),x, algorithm="m
axima")
[Out]
-(2^(8*log(5))*x*e^(4*log(5)^2 + 4*log(2)^2 + 1) - 2^(8*log(5) + 2)*e^(4*log(5)^2 + 4*log(2)^2 + 1))*e^(-8*log
(5)*log(30*x^2 + log(x)) - 8*log(2)*log(30*x^2 + log(x)) + 4*log(30*x^2 + log(x))^2 + 16*log(5)*log(x) + 16*lo
g(2)*log(x) - 16*log(30*x^2 + log(x))*log(x) + 16*log(x)^2)
________________________________________________________________________________________
mupad [B] time = 4.55, size = 103, normalized size = 3.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(log(((3*x^2*log(x))/5 + log(x)^2/100 + 9*x^4)/x^4)^2)*(log(((3*x^2*log(x))/5 + log(x)^2/100 + 9*x^4)
/x^4)*(exp(1)*(4*x - 16) - exp(1)*log(x)*(8*x - 32)) + 30*x^3*exp(1) + x*exp(1)*log(x)))/(x*log(x) + 30*x^3),x
)
[Out]
(exp(log(1/x^4)^2 + log(60*x^2*log(x) + log(x)^2 + 900*x^4)^2 + 4*log(10)^2)*(4*exp(1) - x*exp(1))*(1/x^4)^(2*
log(60*x^2*log(x) + log(x)^2 + 900*x^4)))/((1/x^4)^(4*log(10))*(60*x^2*log(x) + log(x)^2 + 900*x^4)^(4*log(10)
))
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((8*x-32)*exp(1)*ln(x)+(-4*x+16)*exp(1))*ln(1/100*(ln(x)**2+60*x**2*ln(x)+900*x**4)/x**4)-x*exp(1)*
ln(x)-30*x**3*exp(1))*exp(ln(1/100*(ln(x)**2+60*x**2*ln(x)+900*x**4)/x**4)**2)/(x*ln(x)+30*x**3),x)
[Out]
Timed out
________________________________________________________________________________________