Optimal. Leaf size=30 \[ e^{1+\log ^2\left (\frac {1}{4} \left (6+\frac {\log (x)}{5 x^2}\right )^2\right )} (4-x) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 129, normalized size of antiderivative = 4.30, number of steps used = 1, number of rules used = 1, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {2288} \begin {gather*} \frac {e^{\log ^2\left (\frac {900 x^4+60 x^2 \log (x)+\log ^2(x)}{100 x^4}\right )} (e (4-x)-2 e (4-x) \log (x)) \left (900 x^4+60 x^2 \log (x)+\log ^2(x)\right )}{x^4 \left (30 x^3+x \log (x)\right ) \left (\frac {1800 x^3+30 x+60 x \log (x)+\frac {\log (x)}{x}}{x^4}-\frac {2 \left (900 x^4+60 x^2 \log (x)+\log ^2(x)\right )}{x^5}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{\log ^2\left (\frac {900 x^4+60 x^2 \log (x)+\log ^2(x)}{100 x^4}\right )} (e (4-x)-2 e (4-x) \log (x)) \left (900 x^4+60 x^2 \log (x)+\log ^2(x)\right )}{x^4 \left (30 x^3+x \log (x)\right ) \left (\frac {30 x+1800 x^3+\frac {\log (x)}{x}+60 x \log (x)}{x^4}-\frac {2 \left (900 x^4+60 x^2 \log (x)+\log ^2(x)\right )}{x^5}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 29, normalized size = 0.97 \begin {gather*} -e^{1+\log ^2\left (\frac {\left (30 x^2+\log (x)\right )^2}{100 x^4}\right )} (-4+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 33, normalized size = 1.10 \begin {gather*} -{\left (x - 4\right )} e^{\left (\log \left (\frac {900 \, x^{4} + 60 \, x^{2} \log \relax (x) + \log \relax (x)^{2}}{100 \, x^{4}}\right )^{2} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (30 \, x^{3} e + x e \log \relax (x) - 4 \, {\left (2 \, {\left (x - 4\right )} e \log \relax (x) - {\left (x - 4\right )} e\right )} \log \left (\frac {900 \, x^{4} + 60 \, x^{2} \log \relax (x) + \log \relax (x)^{2}}{100 \, x^{4}}\right )\right )} e^{\left (\log \left (\frac {900 \, x^{4} + 60 \, x^{2} \log \relax (x) + \log \relax (x)^{2}}{100 \, x^{4}}\right )^{2}\right )}}{30 \, x^{3} + x \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.86, size = 7474, normalized size = 249.13
method | result | size |
risch | \(\text {Expression too large to display}\) | \(7474\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 123, normalized size = 4.10 \begin {gather*} -{\left (2^{8 \, \log \relax (5)} x e^{\left (4 \, \log \relax (5)^{2} + 4 \, \log \relax (2)^{2} + 1\right )} - 2^{8 \, \log \relax (5) + 2} e^{\left (4 \, \log \relax (5)^{2} + 4 \, \log \relax (2)^{2} + 1\right )}\right )} e^{\left (-8 \, \log \relax (5) \log \left (30 \, x^{2} + \log \relax (x)\right ) - 8 \, \log \relax (2) \log \left (30 \, x^{2} + \log \relax (x)\right ) + 4 \, \log \left (30 \, x^{2} + \log \relax (x)\right )^{2} + 16 \, \log \relax (5) \log \relax (x) + 16 \, \log \relax (2) \log \relax (x) - 16 \, \log \left (30 \, x^{2} + \log \relax (x)\right ) \log \relax (x) + 16 \, \log \relax (x)^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.55, size = 103, normalized size = 3.43 \begin {gather*} \frac {{\mathrm {e}}^{{\ln \left (\frac {1}{x^4}\right )}^2+{\ln \left (900\,x^4+60\,x^2\,\ln \relax (x)+{\ln \relax (x)}^2\right )}^2+4\,{\ln \left (10\right )}^2}\,\left (4\,\mathrm {e}-x\,\mathrm {e}\right )\,{\left (\frac {1}{x^4}\right )}^{2\,\ln \left (900\,x^4+60\,x^2\,\ln \relax (x)+{\ln \relax (x)}^2\right )}}{{\left (\frac {1}{x^4}\right )}^{4\,\ln \left (10\right )}\,{\left (900\,x^4+60\,x^2\,\ln \relax (x)+{\ln \relax (x)}^2\right )}^{4\,\ln \left (10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________