3.69.57 elog2(900x4+60x2log(x)+log2(x)100x4)(30ex3exlog(x)+(e(164x)+e(32+8x)log(x))log(900x4+60x2log(x)+log2(x)100x4))30x3+xlog(x)dx

Optimal. Leaf size=30 e1+log2(14(6+log(x)5x2)2)(4x)

________________________________________________________________________________________

Rubi [B]  time = 0.12, antiderivative size = 129, normalized size of antiderivative = 4.30, number of steps used = 1, number of rules used = 1, integrand size = 98, number of rulesintegrand size = 0.010, Rules used = {2288} elog2(900x4+60x2log(x)+log2(x)100x4)(e(4x)2e(4x)log(x))(900x4+60x2log(x)+log2(x))x4(30x3+xlog(x))(1800x3+30x+60xlog(x)+log(x)xx42(900x4+60x2log(x)+log2(x))x5)

Antiderivative was successfully verified.

[In]

Int[(E^Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]^2*(-30*E*x^3 - E*x*Log[x] + (E*(16 - 4*x) + E*(-32
+ 8*x)*Log[x])*Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]))/(30*x^3 + x*Log[x]),x]

[Out]

(E^Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]^2*(E*(4 - x) - 2*E*(4 - x)*Log[x])*(900*x^4 + 60*x^2*Lo
g[x] + Log[x]^2))/(x^4*(30*x^3 + x*Log[x])*((30*x + 1800*x^3 + Log[x]/x + 60*x*Log[x])/x^4 - (2*(900*x^4 + 60*
x^2*Log[x] + Log[x]^2))/x^5))

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=elog2(900x4+60x2log(x)+log2(x)100x4)(e(4x)2e(4x)log(x))(900x4+60x2log(x)+log2(x))x4(30x3+xlog(x))(30x+1800x3+log(x)x+60xlog(x)x42(900x4+60x2log(x)+log2(x))x5)

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 29, normalized size = 0.97 e1+log2((30x2+log(x))2100x4)(4+x)

Antiderivative was successfully verified.

[In]

Integrate[(E^Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]^2*(-30*E*x^3 - E*x*Log[x] + (E*(16 - 4*x) + E
*(-32 + 8*x)*Log[x])*Log[(900*x^4 + 60*x^2*Log[x] + Log[x]^2)/(100*x^4)]))/(30*x^3 + x*Log[x]),x]

[Out]

-(E^(1 + Log[(30*x^2 + Log[x])^2/(100*x^4)]^2)*(-4 + x))

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 33, normalized size = 1.10 (x4)e(log(900x4+60x2log(x)+log(x)2100x4)2+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x-32)*exp(1)*log(x)+(-4*x+16)*exp(1))*log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)-x*exp(1)*
log(x)-30*x^3*exp(1))*exp(log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)^2)/(x*log(x)+30*x^3),x, algorithm="f
ricas")

[Out]

-(x - 4)*e^(log(1/100*(900*x^4 + 60*x^2*log(x) + log(x)^2)/x^4)^2 + 1)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (30x3e+xelog(x)4(2(x4)elog(x)(x4)e)log(900x4+60x2log(x)+log(x)2100x4))e(log(900x4+60x2log(x)+log(x)2100x4)2)30x3+xlog(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x-32)*exp(1)*log(x)+(-4*x+16)*exp(1))*log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)-x*exp(1)*
log(x)-30*x^3*exp(1))*exp(log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)^2)/(x*log(x)+30*x^3),x, algorithm="g
iac")

[Out]

integrate(-(30*x^3*e + x*e*log(x) - 4*(2*(x - 4)*e*log(x) - (x - 4)*e)*log(1/100*(900*x^4 + 60*x^2*log(x) + lo
g(x)^2)/x^4))*e^(log(1/100*(900*x^4 + 60*x^2*log(x) + log(x)^2)/x^4)^2)/(30*x^3 + x*log(x)), x)

________________________________________________________________________________________

maple [C]  time = 0.86, size = 7474, normalized size = 249.13




method result size



risch Expression too large to display 7474



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((8*x-32)*exp(1)*ln(x)+(-4*x+16)*exp(1))*ln(1/100*(ln(x)^2+60*x^2*ln(x)+900*x^4)/x^4)-x*exp(1)*ln(x)-30*x
^3*exp(1))*exp(ln(1/100*(ln(x)^2+60*x^2*ln(x)+900*x^4)/x^4)^2)/(x*ln(x)+30*x^3),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

maxima [B]  time = 0.67, size = 123, normalized size = 4.10 (28log(5)xe(4log(5)2+4log(2)2+1)28log(5)+2e(4log(5)2+4log(2)2+1))e(8log(5)log(30x2+log(x))8log(2)log(30x2+log(x))+4log(30x2+log(x))2+16log(5)log(x)+16log(2)log(x)16log(30x2+log(x))log(x)+16log(x)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x-32)*exp(1)*log(x)+(-4*x+16)*exp(1))*log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)-x*exp(1)*
log(x)-30*x^3*exp(1))*exp(log(1/100*(log(x)^2+60*x^2*log(x)+900*x^4)/x^4)^2)/(x*log(x)+30*x^3),x, algorithm="m
axima")

[Out]

-(2^(8*log(5))*x*e^(4*log(5)^2 + 4*log(2)^2 + 1) - 2^(8*log(5) + 2)*e^(4*log(5)^2 + 4*log(2)^2 + 1))*e^(-8*log
(5)*log(30*x^2 + log(x)) - 8*log(2)*log(30*x^2 + log(x)) + 4*log(30*x^2 + log(x))^2 + 16*log(5)*log(x) + 16*lo
g(2)*log(x) - 16*log(30*x^2 + log(x))*log(x) + 16*log(x)^2)

________________________________________________________________________________________

mupad [B]  time = 4.55, size = 103, normalized size = 3.43 eln(1x4)2+ln(900x4+60x2ln(x)+ln(x)2)2+4ln(10)2(4exe)(1x4)2ln(900x4+60x2ln(x)+ln(x)2)(1x4)4ln(10)(900x4+60x2ln(x)+ln(x)2)4ln(10)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(log(((3*x^2*log(x))/5 + log(x)^2/100 + 9*x^4)/x^4)^2)*(log(((3*x^2*log(x))/5 + log(x)^2/100 + 9*x^4)
/x^4)*(exp(1)*(4*x - 16) - exp(1)*log(x)*(8*x - 32)) + 30*x^3*exp(1) + x*exp(1)*log(x)))/(x*log(x) + 30*x^3),x
)

[Out]

(exp(log(1/x^4)^2 + log(60*x^2*log(x) + log(x)^2 + 900*x^4)^2 + 4*log(10)^2)*(4*exp(1) - x*exp(1))*(1/x^4)^(2*
log(60*x^2*log(x) + log(x)^2 + 900*x^4)))/((1/x^4)^(4*log(10))*(60*x^2*log(x) + log(x)^2 + 900*x^4)^(4*log(10)
))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((8*x-32)*exp(1)*ln(x)+(-4*x+16)*exp(1))*ln(1/100*(ln(x)**2+60*x**2*ln(x)+900*x**4)/x**4)-x*exp(1)*
ln(x)-30*x**3*exp(1))*exp(ln(1/100*(ln(x)**2+60*x**2*ln(x)+900*x**4)/x**4)**2)/(x*ln(x)+30*x**3),x)

[Out]

Timed out

________________________________________________________________________________________