3.69.58 12+6x2x6+e2(20x440x520x6)+e4(10x240x360x440x510x6)+e5(2x+10x2+20x3+20x4+10x5+2x6)+e(146x+10x5+10x6)+e3(20x3+60x4+60x5+20x6)x5+e2(10x320x410x5)+e4(5x20x230x320x45x5)+e5(1+5x+10x2+10x3+5x4+x5)+e(5x4+5x5)+e3(10x2+30x3+30x4+10x5)dx

Optimal. Leaf size=22 11+x232x(xe(1+x))4

________________________________________________________________________________________

Rubi [B]  time = 0.18, antiderivative size = 51, normalized size of antiderivative = 2.32, number of steps used = 2, number of rules used = 1, integrand size = 257, number of rulesintegrand size = 0.004, Rules used = {2074} x22(1e)(e(1e)x)335e(1e)(e(1e)x)4

Antiderivative was successfully verified.

[In]

Int[(-12 + 6*x - 2*x^6 + E^2*(-20*x^4 - 40*x^5 - 20*x^6) + E^4*(-10*x^2 - 40*x^3 - 60*x^4 - 40*x^5 - 10*x^6) +
 E^5*(2*x + 10*x^2 + 20*x^3 + 20*x^4 + 10*x^5 + 2*x^6) + E*(14 - 6*x + 10*x^5 + 10*x^6) + E^3*(20*x^3 + 60*x^4
 + 60*x^5 + 20*x^6))/(-x^5 + E^2*(-10*x^3 - 20*x^4 - 10*x^5) + E^4*(-5*x - 20*x^2 - 30*x^3 - 20*x^4 - 5*x^5) +
 E^5*(1 + 5*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) + E*(5*x^4 + 5*x^5) + E^3*(10*x^2 + 30*x^3 + 30*x^4 + 10*x^5)),
x]

[Out]

x^2 - (3 - 5*E)/((1 - E)*(E - (1 - E)*x)^4) - 2/((1 - E)*(E - (1 - E)*x)^3)

Rule 2074

Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /;  !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]

Rubi steps

integral=(2x+4(3+5e)(e(1e)x)56(e(1e)x)4)dx=x235e(1e)(e(1e)x)42(1e)(e(1e)x)3

________________________________________________________________________________________

Mathematica [B]  time = 0.08, size = 47, normalized size = 2.14 2x+(1+x)2+35e(1+e)(ex+ex)4+2(1+e)(ex+ex)3

Antiderivative was successfully verified.

[In]

Integrate[(-12 + 6*x - 2*x^6 + E^2*(-20*x^4 - 40*x^5 - 20*x^6) + E^4*(-10*x^2 - 40*x^3 - 60*x^4 - 40*x^5 - 10*
x^6) + E^5*(2*x + 10*x^2 + 20*x^3 + 20*x^4 + 10*x^5 + 2*x^6) + E*(14 - 6*x + 10*x^5 + 10*x^6) + E^3*(20*x^3 +
60*x^4 + 60*x^5 + 20*x^6))/(-x^5 + E^2*(-10*x^3 - 20*x^4 - 10*x^5) + E^4*(-5*x - 20*x^2 - 30*x^3 - 20*x^4 - 5*
x^5) + E^5*(1 + 5*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) + E*(5*x^4 + 5*x^5) + E^3*(10*x^2 + 30*x^3 + 30*x^4 + 10*
x^5)),x]

[Out]

-2*x + (1 + x)^2 + (3 - 5*E)/((-1 + E)*(E - x + E*x)^4) + 2/((-1 + E)*(E - x + E*x)^3)

________________________________________________________________________________________

fricas [B]  time = 0.53, size = 155, normalized size = 7.05 x6+(x6+4x5+6x4+4x3+x2)e44(x6+3x5+3x4+x3)e3+6(x6+2x5+x4)e24(x6+x5)e+2x3x4+(x4+4x3+6x2+4x+1)e44(x4+3x3+3x2+x)e3+6(x4+2x3+x2)e24(x4+x3)e

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20
*x^6+60*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-1
2)/((x^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+
10*x^2)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x, algorithm="fricas")

[Out]

(x^6 + (x^6 + 4*x^5 + 6*x^4 + 4*x^3 + x^2)*e^4 - 4*(x^6 + 3*x^5 + 3*x^4 + x^3)*e^3 + 6*(x^6 + 2*x^5 + x^4)*e^2
 - 4*(x^6 + x^5)*e + 2*x - 3)/(x^4 + (x^4 + 4*x^3 + 6*x^2 + 4*x + 1)*e^4 - 4*(x^4 + 3*x^3 + 3*x^2 + x)*e^3 + 6
*(x^4 + 2*x^3 + x^2)*e^2 - 4*(x^4 + x^3)*e)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20
*x^6+60*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-1
2)/((x^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+
10*x^2)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.38, size = 105, normalized size = 4.77




method result size



risch x2+2x3x4e4+4x3e44x4e3+6x2e412x3e3+6x4e2+4xe412x2e3+12x3e24x4e+e44xe3+6x2e24x3e+x4 105
norman (e44e3+6e24e+1)x6+e2(e6+18e236e+18)x2+(6e812e7+6e6+3+3e412e3+18e212e)e4x4+2e1(7e6)x+4(e7e6+3e39e2+9e3)e3x3+4e(e33e2+3e1)x5(xe+ex)4 188
default x2+2(_R=RootOf((e510e2+5e5e4+10e31)_Z5+(5e520e2+5e20e4+30e3)_Z4+(10e510e230e4+30e3)_Z3+(10e520e4+10e3)_Z2+(5e55e4)_Z+e5)(6+3(1e)_R+7e)ln(x_R)_R4e5+4_R3e55_R4e4+6_R2e516_R3e4+10_R4e3+4_Re518_R2e4+24_R3e310_R4e2+e58_Re4+18_R2e316_R3e2+5_R4ee4+4_Re36_R2e2+4_R3e_R4)5 260
gosper x(18e2x+xe8+6x3e6+4x2e8+18xe4+14e412e3+3x3+3x3e4+12x2e44x5e5+18x3e2+36x2e24x4e536xe312x2e12x3e12x3e336x2e3+4x4e8+6x3e84x2e7+x5e4+6e6x5+12e6x4+e8x54e7x512e7x412e7x3)e4x4e4+4x3e44x4e3+6x2e412x3e3+6x4e2+4xe412x2e3+12x3e24x4e+e44xe3+6x2e24x3e+x4 362



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20*x^6+6
0*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-12)/((x
^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+10*x^2
)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x,method=_RETURNVERBOSE)

[Out]

x^2+(2*x-3)/(x^4*exp(4)+4*x^3*exp(4)-4*x^4*exp(3)+6*x^2*exp(4)-12*x^3*exp(3)+6*x^4*exp(2)+4*x*exp(4)-12*x^2*ex
p(3)+12*x^3*exp(2)-4*x^4*exp(1)+exp(4)-4*x*exp(3)+6*x^2*exp(2)-4*x^3*exp(1)+x^4)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 79, normalized size = 3.59 x2+2x3x4(e44e3+6e24e+1)+4x3(e43e3+3e2e)+6x2(e42e3+e2)+4x(e4e3)+e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20
*x^6+60*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-1
2)/((x^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+
10*x^2)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x, algorithm="maxima")

[Out]

x^2 + (2*x - 3)/(x^4*(e^4 - 4*e^3 + 6*e^2 - 4*e + 1) + 4*x^3*(e^4 - 3*e^3 + 3*e^2 - e) + 6*x^2*(e^4 - 2*e^3 +
e^2) + 4*x*(e^4 - e^3) + e^4)

________________________________________________________________________________________

mupad [B]  time = 4.43, size = 48, normalized size = 2.18 2(e+x(e1))3(e1)+x25e3(e+x(e1))4(e1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((6*x + exp(5)*(2*x + 10*x^2 + 20*x^3 + 20*x^4 + 10*x^5 + 2*x^6) - exp(4)*(10*x^2 + 40*x^3 + 60*x^4 + 40*x^
5 + 10*x^6) + exp(1)*(10*x^5 - 6*x + 10*x^6 + 14) - exp(2)*(20*x^4 + 40*x^5 + 20*x^6) - 2*x^6 + exp(3)*(20*x^3
 + 60*x^4 + 60*x^5 + 20*x^6) - 12)/(exp(5)*(5*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5 + 1) + exp(1)*(5*x^4 + 5*x^5)
- exp(2)*(10*x^3 + 20*x^4 + 10*x^5) - exp(4)*(5*x + 20*x^2 + 30*x^3 + 20*x^4 + 5*x^5) - x^5 + exp(3)*(10*x^2 +
 30*x^3 + 30*x^4 + 10*x^5)),x)

[Out]

2/((exp(1) + x*(exp(1) - 1))^3*(exp(1) - 1)) + x^2 - (5*exp(1) - 3)/((exp(1) + x*(exp(1) - 1))^4*(exp(1) - 1))

________________________________________________________________________________________

sympy [B]  time = 4.74, size = 88, normalized size = 4.00 x2+2x3x4(4e34e+1+6e2+e4)+x3(12e34e+12e2+4e4)+x2(12e3+6e2+6e4)+x(4e3+4e4)+e4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**6+10*x**5+20*x**4+20*x**3+10*x**2+2*x)*exp(1)**5+(-10*x**6-40*x**5-60*x**4-40*x**3-10*x**2)*e
xp(1)**4+(20*x**6+60*x**5+60*x**4+20*x**3)*exp(1)**3+(-20*x**6-40*x**5-20*x**4)*exp(1)**2+(10*x**6+10*x**5-6*x
+14)*exp(1)-2*x**6+6*x-12)/((x**5+5*x**4+10*x**3+10*x**2+5*x+1)*exp(1)**5+(-5*x**5-20*x**4-30*x**3-20*x**2-5*x
)*exp(1)**4+(10*x**5+30*x**4+30*x**3+10*x**2)*exp(1)**3+(-10*x**5-20*x**4-10*x**3)*exp(1)**2+(5*x**5+5*x**4)*e
xp(1)-x**5),x)

[Out]

x**2 + (2*x - 3)/(x**4*(-4*exp(3) - 4*E + 1 + 6*exp(2) + exp(4)) + x**3*(-12*exp(3) - 4*E + 12*exp(2) + 4*exp(
4)) + x**2*(-12*exp(3) + 6*exp(2) + 6*exp(4)) + x*(-4*exp(3) + 4*exp(4)) + exp(4))

________________________________________________________________________________________