3.69.58
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 51, normalized size of antiderivative = 2.32,
number of steps used = 2, number of rules used = 1, integrand size = 257, = 0.004, Rules used
= {2074}
Antiderivative was successfully verified.
[In]
Int[(-12 + 6*x - 2*x^6 + E^2*(-20*x^4 - 40*x^5 - 20*x^6) + E^4*(-10*x^2 - 40*x^3 - 60*x^4 - 40*x^5 - 10*x^6) +
E^5*(2*x + 10*x^2 + 20*x^3 + 20*x^4 + 10*x^5 + 2*x^6) + E*(14 - 6*x + 10*x^5 + 10*x^6) + E^3*(20*x^3 + 60*x^4
+ 60*x^5 + 20*x^6))/(-x^5 + E^2*(-10*x^3 - 20*x^4 - 10*x^5) + E^4*(-5*x - 20*x^2 - 30*x^3 - 20*x^4 - 5*x^5) +
E^5*(1 + 5*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) + E*(5*x^4 + 5*x^5) + E^3*(10*x^2 + 30*x^3 + 30*x^4 + 10*x^5)),
x]
[Out]
x^2 - (3 - 5*E)/((1 - E)*(E - (1 - E)*x)^4) - 2/((1 - E)*(E - (1 - E)*x)^3)
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 47, normalized size = 2.14
Antiderivative was successfully verified.
[In]
Integrate[(-12 + 6*x - 2*x^6 + E^2*(-20*x^4 - 40*x^5 - 20*x^6) + E^4*(-10*x^2 - 40*x^3 - 60*x^4 - 40*x^5 - 10*
x^6) + E^5*(2*x + 10*x^2 + 20*x^3 + 20*x^4 + 10*x^5 + 2*x^6) + E*(14 - 6*x + 10*x^5 + 10*x^6) + E^3*(20*x^3 +
60*x^4 + 60*x^5 + 20*x^6))/(-x^5 + E^2*(-10*x^3 - 20*x^4 - 10*x^5) + E^4*(-5*x - 20*x^2 - 30*x^3 - 20*x^4 - 5*
x^5) + E^5*(1 + 5*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5) + E*(5*x^4 + 5*x^5) + E^3*(10*x^2 + 30*x^3 + 30*x^4 + 10*
x^5)),x]
[Out]
-2*x + (1 + x)^2 + (3 - 5*E)/((-1 + E)*(E - x + E*x)^4) + 2/((-1 + E)*(E - x + E*x)^3)
________________________________________________________________________________________
fricas [B] time = 0.53, size = 155, normalized size = 7.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20
*x^6+60*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-1
2)/((x^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+
10*x^2)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x, algorithm="fricas")
[Out]
(x^6 + (x^6 + 4*x^5 + 6*x^4 + 4*x^3 + x^2)*e^4 - 4*(x^6 + 3*x^5 + 3*x^4 + x^3)*e^3 + 6*(x^6 + 2*x^5 + x^4)*e^2
- 4*(x^6 + x^5)*e + 2*x - 3)/(x^4 + (x^4 + 4*x^3 + 6*x^2 + 4*x + 1)*e^4 - 4*(x^4 + 3*x^3 + 3*x^2 + x)*e^3 + 6
*(x^4 + 2*x^3 + x^2)*e^2 - 4*(x^4 + x^3)*e)
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20
*x^6+60*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-1
2)/((x^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+
10*x^2)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x, algorithm="giac")
[Out]
Timed out
________________________________________________________________________________________
maple [B] time = 0.38, size = 105, normalized size = 4.77
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
gosper |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20*x^6+6
0*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-12)/((x
^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+10*x^2
)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x,method=_RETURNVERBOSE)
[Out]
x^2+(2*x-3)/(x^4*exp(4)+4*x^3*exp(4)-4*x^4*exp(3)+6*x^2*exp(4)-12*x^3*exp(3)+6*x^4*exp(2)+4*x*exp(4)-12*x^2*ex
p(3)+12*x^3*exp(2)-4*x^4*exp(1)+exp(4)-4*x*exp(3)+6*x^2*exp(2)-4*x^3*exp(1)+x^4)
________________________________________________________________________________________
maxima [B] time = 0.37, size = 79, normalized size = 3.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^6+10*x^5+20*x^4+20*x^3+10*x^2+2*x)*exp(1)^5+(-10*x^6-40*x^5-60*x^4-40*x^3-10*x^2)*exp(1)^4+(20
*x^6+60*x^5+60*x^4+20*x^3)*exp(1)^3+(-20*x^6-40*x^5-20*x^4)*exp(1)^2+(10*x^6+10*x^5-6*x+14)*exp(1)-2*x^6+6*x-1
2)/((x^5+5*x^4+10*x^3+10*x^2+5*x+1)*exp(1)^5+(-5*x^5-20*x^4-30*x^3-20*x^2-5*x)*exp(1)^4+(10*x^5+30*x^4+30*x^3+
10*x^2)*exp(1)^3+(-10*x^5-20*x^4-10*x^3)*exp(1)^2+(5*x^5+5*x^4)*exp(1)-x^5),x, algorithm="maxima")
[Out]
x^2 + (2*x - 3)/(x^4*(e^4 - 4*e^3 + 6*e^2 - 4*e + 1) + 4*x^3*(e^4 - 3*e^3 + 3*e^2 - e) + 6*x^2*(e^4 - 2*e^3 +
e^2) + 4*x*(e^4 - e^3) + e^4)
________________________________________________________________________________________
mupad [B] time = 4.43, size = 48, normalized size = 2.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((6*x + exp(5)*(2*x + 10*x^2 + 20*x^3 + 20*x^4 + 10*x^5 + 2*x^6) - exp(4)*(10*x^2 + 40*x^3 + 60*x^4 + 40*x^
5 + 10*x^6) + exp(1)*(10*x^5 - 6*x + 10*x^6 + 14) - exp(2)*(20*x^4 + 40*x^5 + 20*x^6) - 2*x^6 + exp(3)*(20*x^3
+ 60*x^4 + 60*x^5 + 20*x^6) - 12)/(exp(5)*(5*x + 10*x^2 + 10*x^3 + 5*x^4 + x^5 + 1) + exp(1)*(5*x^4 + 5*x^5)
- exp(2)*(10*x^3 + 20*x^4 + 10*x^5) - exp(4)*(5*x + 20*x^2 + 30*x^3 + 20*x^4 + 5*x^5) - x^5 + exp(3)*(10*x^2 +
30*x^3 + 30*x^4 + 10*x^5)),x)
[Out]
2/((exp(1) + x*(exp(1) - 1))^3*(exp(1) - 1)) + x^2 - (5*exp(1) - 3)/((exp(1) + x*(exp(1) - 1))^4*(exp(1) - 1))
________________________________________________________________________________________
sympy [B] time = 4.74, size = 88, normalized size = 4.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**6+10*x**5+20*x**4+20*x**3+10*x**2+2*x)*exp(1)**5+(-10*x**6-40*x**5-60*x**4-40*x**3-10*x**2)*e
xp(1)**4+(20*x**6+60*x**5+60*x**4+20*x**3)*exp(1)**3+(-20*x**6-40*x**5-20*x**4)*exp(1)**2+(10*x**6+10*x**5-6*x
+14)*exp(1)-2*x**6+6*x-12)/((x**5+5*x**4+10*x**3+10*x**2+5*x+1)*exp(1)**5+(-5*x**5-20*x**4-30*x**3-20*x**2-5*x
)*exp(1)**4+(10*x**5+30*x**4+30*x**3+10*x**2)*exp(1)**3+(-10*x**5-20*x**4-10*x**3)*exp(1)**2+(5*x**5+5*x**4)*e
xp(1)-x**5),x)
[Out]
x**2 + (2*x - 3)/(x**4*(-4*exp(3) - 4*E + 1 + 6*exp(2) + exp(4)) + x**3*(-12*exp(3) - 4*E + 12*exp(2) + 4*exp(
4)) + x**2*(-12*exp(3) + 6*exp(2) + 6*exp(4)) + x*(-4*exp(3) + 4*exp(4)) + exp(4))
________________________________________________________________________________________