Optimal. Leaf size=18 \[ e^2+\log \left (\log \left (4+e^{\frac {x}{3 e^2}}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 14, normalized size of antiderivative = 0.78, number of steps used = 5, number of rules used = 5, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {2282, 12, 2390, 2302, 29} \begin {gather*} \log \left (\log \left (e^{\frac {x}{3 e^2}}+4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 2282
Rule 2302
Rule 2390
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\left (3 e^2\right ) \operatorname {Subst}\left (\int \frac {1}{3 e^2 (4+x) \log (4+x)} \, dx,x,e^{\frac {x}{3 e^2}}\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{(4+x) \log (4+x)} \, dx,x,e^{\frac {x}{3 e^2}}\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{x \log (x)} \, dx,x,4+e^{\frac {x}{3 e^2}}\right )\\ &=\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (4+e^{\frac {x}{3 e^2}}\right )\right )\\ &=\log \left (\log \left (4+e^{\frac {x}{3 e^2}}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 14, normalized size = 0.78 \begin {gather*} \log \left (\log \left (4+e^{\frac {x}{3 e^2}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 21, normalized size = 1.17 \begin {gather*} \log \left (\log \left ({\left (4 \, e^{2} + e^{\left (\frac {1}{3} \, {\left (x + 6 \, e^{2}\right )} e^{\left (-2\right )}\right )}\right )} e^{\left (-2\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 11, normalized size = 0.61 \begin {gather*} \log \left ({\left | \log \left (e^{\left (\frac {1}{3} \, x e^{\left (-2\right )}\right )} + 4\right ) \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 11, normalized size = 0.61
method | result | size |
risch | \(\ln \left (\ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{-2}}{3}}+4\right )\right )\) | \(11\) |
derivativedivides | \(\ln \left (\ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{-2}}{3}}+4\right )\right )\) | \(13\) |
default | \(\ln \left (\ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{-2}}{3}}+4\right )\right )\) | \(13\) |
norman | \(\ln \left (\ln \left ({\mathrm e}^{\frac {x \,{\mathrm e}^{-2}}{3}}+4\right )\right )\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 10, normalized size = 0.56 \begin {gather*} \log \left (\log \left (e^{\left (\frac {1}{3} \, x e^{\left (-2\right )}\right )} + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.23, size = 10, normalized size = 0.56 \begin {gather*} \ln \left (\ln \left ({\mathrm {e}}^{\frac {x\,{\mathrm {e}}^{-2}}{3}}+4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 12, normalized size = 0.67 \begin {gather*} \log {\left (\log {\left (e^{\frac {x}{3 e^{2}}} + 4 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________