3.69.61 6x2+10x3+(4x+20x2)log(400)+10xlog2(400)4+20x+25x2+(20+50x)log(400)+25log2(400)dx

Optimal. Leaf size=17 2x210+4x+log(400)

________________________________________________________________________________________

Rubi [B]  time = 0.09, antiderivative size = 36, normalized size of antiderivative = 2.12, number of steps used = 4, number of rules used = 3, integrand size = 57, number of rulesintegrand size = 0.053, Rules used = {1986, 27, 1850} x252x252(2+5log(400))2125(5x+2+5log(400))

Antiderivative was successfully verified.

[In]

Int[(6*x^2 + 10*x^3 + (4*x + 20*x^2)*Log[400] + 10*x*Log[400]^2)/(4 + 20*x + 25*x^2 + (20 + 50*x)*Log[400] + 2
5*Log[400]^2),x]

[Out]

(-2*x)/25 + x^2/5 - (2*(2 + 5*Log[400])^2)/(125*(2 + 5*x + 5*Log[400]))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1850

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])

Rule 1986

Int[(Pq_)*(u_)^(p_.), x_Symbol] :> Int[Pq*ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && PolyQ[Pq, x] && QuadraticQ
[u, x] &&  !QuadraticMatchQ[u, x]

Rubi steps

integral=6x2+10x3+(4x+20x2)log(400)+10xlog2(400)25x2+10x(2+5log(400))+(2+5log(400))2dx=6x2+10x3+(4x+20x2)log(400)+10xlog2(400)(2+5x+5log(400))2dx=(225+2x5+2(2+5log(400))225(2+5x+5log(400))2)dx=2x25+x252(2+5log(400))2125(2+5x+5log(400))

________________________________________________________________________________________

Mathematica [B]  time = 0.03, size = 59, normalized size = 3.47 125x3+125x2log(400)(2+5log(400))2(6+5log(400))5x(12+40log(400)+25log2(400))125(2+5x+5log(400))

Antiderivative was successfully verified.

[In]

Integrate[(6*x^2 + 10*x^3 + (4*x + 20*x^2)*Log[400] + 10*x*Log[400]^2)/(4 + 20*x + 25*x^2 + (20 + 50*x)*Log[40
0] + 25*Log[400]^2),x]

[Out]

(125*x^3 + 125*x^2*Log[400] - (2 + 5*Log[400])^2*(6 + 5*Log[400]) - 5*x*(12 + 40*Log[400] + 25*Log[400]^2))/(1
25*(2 + 5*x + 5*Log[400]))

________________________________________________________________________________________

fricas [B]  time = 0.56, size = 43, normalized size = 2.53 125x3+10(25x210x8)log(20)200log(20)220x8125(5x+10log(20)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((40*x*log(20)^2+2*(20*x^2+4*x)*log(20)+10*x^3+6*x^2)/(100*log(20)^2+2*(50*x+20)*log(20)+25*x^2+20*x+
4),x, algorithm="fricas")

[Out]

1/125*(125*x^3 + 10*(25*x^2 - 10*x - 8)*log(20) - 200*log(20)^2 - 20*x - 8)/(5*x + 10*log(20) + 2)

________________________________________________________________________________________

giac [A]  time = 0.29, size = 34, normalized size = 2.00 15x2225x8(25log(20)2+10log(20)+1)125(5x+10log(20)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((40*x*log(20)^2+2*(20*x^2+4*x)*log(20)+10*x^3+6*x^2)/(100*log(20)^2+2*(50*x+20)*log(20)+25*x^2+20*x+
4),x, algorithm="giac")

[Out]

1/5*x^2 - 2/25*x - 8/125*(25*log(20)^2 + 10*log(20) + 1)/(5*x + 10*log(20) + 2)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 22, normalized size = 1.29




method result size



gosper x2(x+2ln(20))10ln(20)+5x+2 22
norman x3+2x2ln(20)10ln(20)+5x+2 24
default 2x25+x252(4ln(20)25+8ln(20)25+4125)10ln(20)+5x+2 35
risch x252x254ln(5)225(2ln(2)+ln(5)+x2+15)16ln(2)ln(5)25(2ln(2)+ln(5)+x2+15)16ln(2)225(2ln(2)+ln(5)+x2+15)16ln(2)125(2ln(2)+ln(5)+x2+15)8ln(5)125(2ln(2)+ln(5)+x2+15)4625(2ln(2)+ln(5)+x2+15) 116
meijerg 4(40ln(20)+6)(5ln(20)+1)2(5x(15x2(5ln(20)+1)+6)6(5ln(20)+1)(1+5x2(5ln(20)+1))2ln(1+5x2(5ln(20)+1)))625(2ln(20)+25)+(40ln(20)2+8ln(20))(5x2(5ln(20)+1)(1+5x2(5ln(20)+1))+ln(1+5x2(5ln(20)+1)))25+16(5ln(20)+1)3(5x(25x22(5ln(20)+1)2+15x5ln(20)+1+12)8(5ln(20)+1)(1+5x2(5ln(20)+1))+3ln(1+5x2(5ln(20)+1)))625(2ln(20)+25) 223



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((40*x*ln(20)^2+2*(20*x^2+4*x)*ln(20)+10*x^3+6*x^2)/(100*ln(20)^2+2*(50*x+20)*ln(20)+25*x^2+20*x+4),x,metho
d=_RETURNVERBOSE)

[Out]

x^2*(x+2*ln(20))/(10*ln(20)+5*x+2)

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 34, normalized size = 2.00 15x2225x8(25log(20)2+10log(20)+1)125(5x+10log(20)+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((40*x*log(20)^2+2*(20*x^2+4*x)*log(20)+10*x^3+6*x^2)/(100*log(20)^2+2*(50*x+20)*log(20)+25*x^2+20*x+
4),x, algorithm="maxima")

[Out]

1/5*x^2 - 2/25*x - 8/125*(25*log(20)^2 + 10*log(20) + 1)/(5*x + 10*log(20) + 2)

________________________________________________________________________________________

mupad [B]  time = 0.13, size = 34, normalized size = 2.00 x2516ln(20)+40ln(20)2+85125x+250ln(20)+502x25

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*log(20)*(4*x + 20*x^2) + 40*x*log(20)^2 + 6*x^2 + 10*x^3)/(20*x + 2*log(20)*(50*x + 20) + 100*log(20)^2
 + 25*x^2 + 4),x)

[Out]

x^2/5 - (16*log(20) + 40*log(20)^2 + 8/5)/(125*x + 250*log(20) + 50) - (2*x)/25

________________________________________________________________________________________

sympy [B]  time = 0.28, size = 34, normalized size = 2.00 x252x25+200log(20)280log(20)8625x+250+1250log(20)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((40*x*ln(20)**2+2*(20*x**2+4*x)*ln(20)+10*x**3+6*x**2)/(100*ln(20)**2+2*(50*x+20)*ln(20)+25*x**2+20*
x+4),x)

[Out]

x**2/5 - 2*x/25 + (-200*log(20)**2 - 80*log(20) - 8)/(625*x + 250 + 1250*log(20))

________________________________________________________________________________________