3.69.62 x2+x3+e1+x(2x2x2)log(4)+e2+2x(1+x)log2(4)+(9x+3x2+3x3+x4+e1+x(6x11x23x3)log(4)+e2+2x(3x+x2)log2(4)+(3xx3+e1+x(2x+3x2)log(4)e2+2xxlog2(4))log(x))log(3+xlog(x))(3x3x4+e1+x(6x2+2x3)log(4)+e2+2x(3xx2)log2(4)+(x32e1+xx2log(4)+e2+2xxlog2(4))log(x))log(3+xlog(x))dx

Optimal. Leaf size=33 5x+3+xxe1+xlog(4)log(log(3+xlog(x)))

________________________________________________________________________________________

Rubi [F]  time = 1.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} x2+x3+e1+x(2x2x2)log(4)+e2+2x(1+x)log2(4)+(9x+3x2+3x3+x4+e1+x(6x11x23x3)log(4)+e2+2x(3x+x2)log2(4)+(3xx3+e1+x(2x+3x2)log(4)e2+2xxlog2(4))log(x))log(3+xlog(x))(3x3x4+e1+x(6x2+2x3)log(4)+e2+2x(3xx2)log2(4)+(x32e1+xx2log(4)+e2+2xxlog2(4))log(x))log(3+xlog(x))dx

Verification is not applicable to the result.

[In]

Int[(-x^2 + x^3 + E^(-1 + x)*(2*x - 2*x^2)*Log[4] + E^(-2 + 2*x)*(-1 + x)*Log[4]^2 + (9*x + 3*x^2 + 3*x^3 + x^
4 + E^(-1 + x)*(-6*x - 11*x^2 - 3*x^3)*Log[4] + E^(-2 + 2*x)*(3*x + x^2)*Log[4]^2 + (-3*x - x^3 + E^(-1 + x)*(
2*x + 3*x^2)*Log[4] - E^(-2 + 2*x)*x*Log[4]^2)*Log[x])*Log[3 + x - Log[x]])/((-3*x^3 - x^4 + E^(-1 + x)*(6*x^2
 + 2*x^3)*Log[4] + E^(-2 + 2*x)*(-3*x - x^2)*Log[4]^2 + (x^3 - 2*E^(-1 + x)*x^2*Log[4] + E^(-2 + 2*x)*x*Log[4]
^2)*Log[x])*Log[3 + x - Log[x]]),x]

[Out]

-x - Log[Log[3 + x - Log[x]]] - 3*E^2*Defer[Int][(E*x - E^x*Log[4])^(-2), x] + 2*E^2*Defer[Int][x/(E*x - E^x*L
og[4])^2, x] + E^2*Defer[Int][x^2/(E*x - E^x*Log[4])^2, x] - 2*E*Defer[Int][(E*x - E^x*Log[4])^(-1), x] - E*De
fer[Int][x/(E*x - E^x*Log[4]), x]

Rubi steps

integral=(e2(3+x2)+e1+x(2+3x)log(4)e2xlog2(4)(exexlog(4))2+1xx(3+xlog(x))log(3+xlog(x)))dx=e2(3+x2)+e1+x(2+3x)log(4)e2xlog2(4)(exexlog(4))2dx+1xx(3+xlog(x))log(3+xlog(x))dx=log(log(3+xlog(x)))+(1+e2(3+2x+x2)(exexlog(4))2e(2+x)exexlog(4))dx=xlog(log(3+xlog(x)))e2+xexexlog(4)dx+e23+2x+x2(exexlog(4))2dx=xlog(log(3+xlog(x)))e(2exexlog(4)+xexexlog(4))dx+e2(3(exexlog(4))2+2x(exexlog(4))2+x2(exexlog(4))2)dx=xlog(log(3+xlog(x)))exexexlog(4)dx(2e)1exexlog(4)dx+e2x2(exexlog(4))2dx+(2e2)x(exexlog(4))2dx(3e2)1(exexlog(4))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.45, size = 37, normalized size = 1.12 x+3eexex+exlog(4)log(log(3+xlog(x)))

Antiderivative was successfully verified.

[In]

Integrate[(-x^2 + x^3 + E^(-1 + x)*(2*x - 2*x^2)*Log[4] + E^(-2 + 2*x)*(-1 + x)*Log[4]^2 + (9*x + 3*x^2 + 3*x^
3 + x^4 + E^(-1 + x)*(-6*x - 11*x^2 - 3*x^3)*Log[4] + E^(-2 + 2*x)*(3*x + x^2)*Log[4]^2 + (-3*x - x^3 + E^(-1
+ x)*(2*x + 3*x^2)*Log[4] - E^(-2 + 2*x)*x*Log[4]^2)*Log[x])*Log[3 + x - Log[x]])/((-3*x^3 - x^4 + E^(-1 + x)*
(6*x^2 + 2*x^3)*Log[4] + E^(-2 + 2*x)*(-3*x - x^2)*Log[4]^2 + (x^3 - 2*E^(-1 + x)*x^2*Log[4] + E^(-2 + 2*x)*x*
Log[4]^2)*Log[x])*Log[3 + x - Log[x]]),x]

[Out]

-x + (-3*E - E*x)/(-(E*x) + E^x*Log[4]) - Log[Log[3 + x - Log[x]]]

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 55, normalized size = 1.67 2xe(x1)log(2)x2+(2e(x1)log(2)x)log(log(xlog(x)+3))+x+32e(x1)log(2)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x*log(2)^2*exp(x-1)^2+2*(3*x^2+2*x)*log(2)*exp(x-1)-x^3-3*x)*log(x)+4*(x^2+3*x)*log(2)^2*exp(x
-1)^2+2*(-3*x^3-11*x^2-6*x)*log(2)*exp(x-1)+x^4+3*x^3+3*x^2+9*x)*log(-log(x)+3+x)+4*(x-1)*log(2)^2*exp(x-1)^2+
2*(-2*x^2+2*x)*log(2)*exp(x-1)+x^3-x^2)/((4*x*log(2)^2*exp(x-1)^2-4*x^2*log(2)*exp(x-1)+x^3)*log(x)+4*(-x^2-3*
x)*log(2)^2*exp(x-1)^2+2*(2*x^3+6*x^2)*log(2)*exp(x-1)-x^4-3*x^3)/log(-log(x)+3+x),x, algorithm="fricas")

[Out]

-(2*x*e^(x - 1)*log(2) - x^2 + (2*e^(x - 1)*log(2) - x)*log(log(x - log(x) + 3)) + x + 3)/(2*e^(x - 1)*log(2)
- x)

________________________________________________________________________________________

giac [A]  time = 0.45, size = 66, normalized size = 2.00 x2e2xexlog(2)+xelog(log(xlog(x)+3))2exlog(2)log(log(xlog(x)+3))xe3exe2exlog(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x*log(2)^2*exp(x-1)^2+2*(3*x^2+2*x)*log(2)*exp(x-1)-x^3-3*x)*log(x)+4*(x^2+3*x)*log(2)^2*exp(x
-1)^2+2*(-3*x^3-11*x^2-6*x)*log(2)*exp(x-1)+x^4+3*x^3+3*x^2+9*x)*log(-log(x)+3+x)+4*(x-1)*log(2)^2*exp(x-1)^2+
2*(-2*x^2+2*x)*log(2)*exp(x-1)+x^3-x^2)/((4*x*log(2)^2*exp(x-1)^2-4*x^2*log(2)*exp(x-1)+x^3)*log(x)+4*(-x^2-3*
x)*log(2)^2*exp(x-1)^2+2*(2*x^3+6*x^2)*log(2)*exp(x-1)-x^4-3*x^3)/log(-log(x)+3+x),x, algorithm="giac")

[Out]

-(x^2*e - 2*x*e^x*log(2) + x*e*log(log(x - log(x) + 3)) - 2*e^x*log(2)*log(log(x - log(x) + 3)) - x*e - 3*e)/(
x*e - 2*e^x*log(2))

________________________________________________________________________________________

maple [A]  time = 0.07, size = 46, normalized size = 1.39




method result size



risch 2xln(2)ex1x2+x+32ln(2)ex1xln(ln(ln(x)+3+x)) 46



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-4*x*ln(2)^2*exp(x-1)^2+2*(3*x^2+2*x)*ln(2)*exp(x-1)-x^3-3*x)*ln(x)+4*(x^2+3*x)*ln(2)^2*exp(x-1)^2+2*(-
3*x^3-11*x^2-6*x)*ln(2)*exp(x-1)+x^4+3*x^3+3*x^2+9*x)*ln(-ln(x)+3+x)+4*(x-1)*ln(2)^2*exp(x-1)^2+2*(-2*x^2+2*x)
*ln(2)*exp(x-1)+x^3-x^2)/((4*x*ln(2)^2*exp(x-1)^2-4*x^2*ln(2)*exp(x-1)+x^3)*ln(x)+4*(-x^2-3*x)*ln(2)^2*exp(x-1
)^2+2*(2*x^3+6*x^2)*ln(2)*exp(x-1)-x^4-3*x^3)/ln(-ln(x)+3+x),x,method=_RETURNVERBOSE)

[Out]

-(2*x*ln(2)*exp(x-1)-x^2+x+3)/(2*ln(2)*exp(x-1)-x)-ln(ln(-ln(x)+3+x))

________________________________________________________________________________________

maxima [A]  time = 0.55, size = 50, normalized size = 1.52 x2e2xexlog(2)xe3exe2exlog(2)log(log(xlog(x)+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x*log(2)^2*exp(x-1)^2+2*(3*x^2+2*x)*log(2)*exp(x-1)-x^3-3*x)*log(x)+4*(x^2+3*x)*log(2)^2*exp(x
-1)^2+2*(-3*x^3-11*x^2-6*x)*log(2)*exp(x-1)+x^4+3*x^3+3*x^2+9*x)*log(-log(x)+3+x)+4*(x-1)*log(2)^2*exp(x-1)^2+
2*(-2*x^2+2*x)*log(2)*exp(x-1)+x^3-x^2)/((4*x*log(2)^2*exp(x-1)^2-4*x^2*log(2)*exp(x-1)+x^3)*log(x)+4*(-x^2-3*
x)*log(2)^2*exp(x-1)^2+2*(2*x^3+6*x^2)*log(2)*exp(x-1)-x^4-3*x^3)/log(-log(x)+3+x),x, algorithm="maxima")

[Out]

-(x^2*e - 2*x*e^x*log(2) - x*e - 3*e)/(x*e - 2*e^x*log(2)) - log(log(x - log(x) + 3))

________________________________________________________________________________________

mupad [B]  time = 4.66, size = 69, normalized size = 2.09 xln(ln(xln(x)+3))6ln(2)xln(16)+4x2ln(2)x2ln(64)4ln(2)(ln(2)xln(2))(ex1x2ln(2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^3 - x^2 + log(x - log(x) + 3)*(9*x - log(x)*(3*x + x^3 + 4*x*exp(2*x - 2)*log(2)^2 - 2*exp(x - 1)*log(
2)*(2*x + 3*x^2)) + 3*x^2 + 3*x^3 + x^4 - 2*exp(x - 1)*log(2)*(6*x + 11*x^2 + 3*x^3) + 4*exp(2*x - 2)*log(2)^2
*(3*x + x^2)) + 2*exp(x - 1)*log(2)*(2*x - 2*x^2) + 4*exp(2*x - 2)*log(2)^2*(x - 1))/(log(x - log(x) + 3)*(3*x
^3 - log(x)*(x^3 + 4*x*exp(2*x - 2)*log(2)^2 - 4*x^2*exp(x - 1)*log(2)) + x^4 + 4*exp(2*x - 2)*log(2)^2*(3*x +
 x^2) - 2*exp(x - 1)*log(2)*(6*x^2 + 2*x^3))),x)

[Out]

- x - log(log(x - log(x) + 3)) - (6*log(2) - x*log(16) + 4*x^2*log(2) - x^2*log(64))/(4*log(2)*(log(2) - x*log
(2))*(exp(x - 1) - x/(2*log(2))))

________________________________________________________________________________________

sympy [A]  time = 0.74, size = 27, normalized size = 0.82 x+x3x+2ex1log(2)log(log(xlog(x)+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-4*x*ln(2)**2*exp(x-1)**2+2*(3*x**2+2*x)*ln(2)*exp(x-1)-x**3-3*x)*ln(x)+4*(x**2+3*x)*ln(2)**2*exp
(x-1)**2+2*(-3*x**3-11*x**2-6*x)*ln(2)*exp(x-1)+x**4+3*x**3+3*x**2+9*x)*ln(-ln(x)+3+x)+4*(x-1)*ln(2)**2*exp(x-
1)**2+2*(-2*x**2+2*x)*ln(2)*exp(x-1)+x**3-x**2)/((4*x*ln(2)**2*exp(x-1)**2-4*x**2*ln(2)*exp(x-1)+x**3)*ln(x)+4
*(-x**2-3*x)*ln(2)**2*exp(x-1)**2+2*(2*x**3+6*x**2)*ln(2)*exp(x-1)-x**4-3*x**3)/ln(-ln(x)+3+x),x)

[Out]

-x + (-x - 3)/(-x + 2*exp(x - 1)*log(2)) - log(log(x - log(x) + 3))

________________________________________________________________________________________