3.69.64 4e4x+24e2xlog(5)+32xlog2(5)+(6e4x+16e2xlog(5))log(2x)+2e4xlog2(2x)e4dx

Optimal. Leaf size=18 (x+4xlog(5)e2+xlog(2x))2

________________________________________________________________________________________

Rubi [B]  time = 0.07, antiderivative size = 80, normalized size of antiderivative = 4.44, number of steps used = 9, number of rules used = 4, integrand size = 58, number of rulesintegrand size = 0.069, Rules used = {6, 12, 2304, 2305} x22+x2log2(2x)+x2(3+8log(5)e2)log(2x)x2log(2x)+2x2(e2+log(25))(e2+log(625))e412x2(3+8log(5)e2)

Antiderivative was successfully verified.

[In]

Int[(4*E^4*x + 24*E^2*x*Log[5] + 32*x*Log[5]^2 + (6*E^4*x + 16*E^2*x*Log[5])*Log[2*x] + 2*E^4*x*Log[2*x]^2)/E^
4,x]

[Out]

x^2/2 - (x^2*(3 + (8*Log[5])/E^2))/2 + (2*x^2*(E^2 + Log[25])*(E^2 + Log[625]))/E^4 - x^2*Log[2*x] + x^2*(3 +
(8*Log[5])/E^2)*Log[2*x] + x^2*Log[2*x]^2

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rubi steps

integral=32xlog2(5)+x(4e4+24e2log(5))+(6e4x+16e2xlog(5))log(2x)+2e4xlog2(2x)e4dx=x(4e4+24e2log(5)+32log2(5))+(6e4x+16e2xlog(5))log(2x)+2e4xlog2(2x)e4dx=(x(4e4+24e2log(5)+32log2(5))+(6e4x+16e2xlog(5))log(2x)+2e4xlog2(2x))dxe4=2x2(e2+log(25))(e2+log(625))e4+2xlog2(2x)dx+(6e4x+16e2xlog(5))log(2x)dxe4=2x2(e2+log(25))(e2+log(625))e4+x2log2(2x)2xlog(2x)dx+x(6e4+16e2log(5))log(2x)dxe4=x22+2x2(e2+log(25))(e2+log(625))e4x2log(2x)+x2log2(2x)+(2(3+8log(5)e2))xlog(2x)dx=x2212x2(3+8log(5)e2)+2x2(e2+log(25))(e2+log(625))e4x2log(2x)+x2(3+8log(5)e2)log(2x)+x2log2(2x)

________________________________________________________________________________________

Mathematica [B]  time = 0.05, size = 76, normalized size = 4.22 2(e4x22+4e2x2log(5)+8x2log2(5)+e4x2log(2x)+4e2x2log(5)log(2x)+12e4x2log2(2x))e4

Antiderivative was successfully verified.

[In]

Integrate[(4*E^4*x + 24*E^2*x*Log[5] + 32*x*Log[5]^2 + (6*E^4*x + 16*E^2*x*Log[5])*Log[2*x] + 2*E^4*x*Log[2*x]
^2)/E^4,x]

[Out]

(2*((E^4*x^2)/2 + 4*E^2*x^2*Log[5] + 8*x^2*Log[5]^2 + E^4*x^2*Log[2*x] + 4*E^2*x^2*Log[5]*Log[2*x] + (E^4*x^2*
Log[2*x]^2)/2))/E^4

________________________________________________________________________________________

fricas [B]  time = 1.09, size = 62, normalized size = 3.44 (x2e4log(2x)2+8x2e2log(5)+16x2log(5)2+x2e4+2(4x2e2log(5)+x2e4)log(2x))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(2)^2*log(2*x)^2+(16*x*exp(2)*log(5)+6*x*exp(2)^2)*log(2*x)+32*x*log(5)^2+24*x*exp(2)*log(5)
+4*x*exp(2)^2)/exp(2)^2,x, algorithm="fricas")

[Out]

(x^2*e^4*log(2*x)^2 + 8*x^2*e^2*log(5) + 16*x^2*log(5)^2 + x^2*e^4 + 2*(4*x^2*e^2*log(5) + x^2*e^4)*log(2*x))*
e^(-4)

________________________________________________________________________________________

giac [B]  time = 0.20, size = 80, normalized size = 4.44 12(16x2e2log(5)log(2x)+16x2e2log(5)+32x2log(5)2+6x2e4log(2x)+x2e4+(2x2log(2x)22x2log(2x)+x2)e4)e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(2)^2*log(2*x)^2+(16*x*exp(2)*log(5)+6*x*exp(2)^2)*log(2*x)+32*x*log(5)^2+24*x*exp(2)*log(5)
+4*x*exp(2)^2)/exp(2)^2,x, algorithm="giac")

[Out]

1/2*(16*x^2*e^2*log(5)*log(2*x) + 16*x^2*e^2*log(5) + 32*x^2*log(5)^2 + 6*x^2*e^4*log(2*x) + x^2*e^4 + (2*x^2*
log(2*x)^2 - 2*x^2*log(2*x) + x^2)*e^4)*e^(-4)

________________________________________________________________________________________

maple [B]  time = 0.04, size = 60, normalized size = 3.33




method result size



risch x2ln(2x)2+2e2x2(e2+4ln(5))ln(2x)+8e2ln(5)e4x2+16ln(5)2e4x2+e4e4x2 60
norman (x2e2ln(2x)2+(2e2+8ln(5))x2ln(2x)+(e4+8e2ln(5)+16ln(5)2)e2x2)e2 61
default e4(2e4x2ln(2x)+x2e4+8e2ln(5)x2ln(2x)+8e2ln(5)x2+16x2ln(5)2+e4x2ln(2x)2) 73
derivativedivides e4(4e4x2ln(2x)+2x2e4+16e2ln(5)x2ln(2x)+16e2ln(5)x2+2e4x2ln(2x)2+32x2ln(5)2)2 76



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x*exp(2)^2*ln(2*x)^2+(16*x*exp(2)*ln(5)+6*x*exp(2)^2)*ln(2*x)+32*x*ln(5)^2+24*x*exp(2)*ln(5)+4*x*exp(2)
^2)/exp(2)^2,x,method=_RETURNVERBOSE)

[Out]

x^2*ln(2*x)^2+2*exp(-2)*x^2*(exp(2)+4*ln(5))*ln(2*x)+8*exp(2)*ln(5)*exp(-4)*x^2+16*ln(5)^2*exp(-4)*x^2+exp(4)*
exp(-4)*x^2

________________________________________________________________________________________

maxima [B]  time = 0.36, size = 91, normalized size = 5.06 12((2log(2x)22log(2x)+1)x2e4+24x2e2log(5)+32x2log(5)2(8e2log(5)+3e4)x2+4x2e4+2(8x2e2log(5)+3x2e4)log(2x))e(4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(2)^2*log(2*x)^2+(16*x*exp(2)*log(5)+6*x*exp(2)^2)*log(2*x)+32*x*log(5)^2+24*x*exp(2)*log(5)
+4*x*exp(2)^2)/exp(2)^2,x, algorithm="maxima")

[Out]

1/2*((2*log(2*x)^2 - 2*log(2*x) + 1)*x^2*e^4 + 24*x^2*e^2*log(5) + 32*x^2*log(5)^2 - (8*e^2*log(5) + 3*e^4)*x^
2 + 4*x^2*e^4 + 2*(8*x^2*e^2*log(5) + 3*x^2*e^4)*log(2*x))*e^(-4)

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 20, normalized size = 1.11 x2e4(e2+ln(625)+ln(2x)e2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-4)*(4*x*exp(4) + 32*x*log(5)^2 + log(2*x)*(6*x*exp(4) + 16*x*exp(2)*log(5)) + 24*x*exp(2)*log(5) + 2*
x*log(2*x)^2*exp(4)),x)

[Out]

x^2*exp(-4)*(exp(2) + log(625) + log(2*x)*exp(2))^2

________________________________________________________________________________________

sympy [B]  time = 0.21, size = 60, normalized size = 3.33 x2log(2x)2+x2(16log(5)2+e4+8e2log(5))e4+(8x2log(5)+2x2e2)log(2x)e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x*exp(2)**2*ln(2*x)**2+(16*x*exp(2)*ln(5)+6*x*exp(2)**2)*ln(2*x)+32*x*ln(5)**2+24*x*exp(2)*ln(5)+
4*x*exp(2)**2)/exp(2)**2,x)

[Out]

x**2*log(2*x)**2 + x**2*(16*log(5)**2 + exp(4) + 8*exp(2)*log(5))*exp(-4) + (8*x**2*log(5) + 2*x**2*exp(2))*ex
p(-2)*log(2*x)

________________________________________________________________________________________