3.69.64
Optimal. Leaf size=18
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 80, normalized size of antiderivative = 4.44,
number of steps used = 9, number of rules used = 4, integrand size = 58, = 0.069, Rules used =
{6, 12, 2304, 2305}
Antiderivative was successfully verified.
[In]
Int[(4*E^4*x + 24*E^2*x*Log[5] + 32*x*Log[5]^2 + (6*E^4*x + 16*E^2*x*Log[5])*Log[2*x] + 2*E^4*x*Log[2*x]^2)/E^
4,x]
[Out]
x^2/2 - (x^2*(3 + (8*Log[5])/E^2))/2 + (2*x^2*(E^2 + Log[25])*(E^2 + Log[625]))/E^4 - x^2*Log[2*x] + x^2*(3 +
(8*Log[5])/E^2)*Log[2*x] + x^2*Log[2*x]^2
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2305
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.05, size = 76, normalized size = 4.22
Antiderivative was successfully verified.
[In]
Integrate[(4*E^4*x + 24*E^2*x*Log[5] + 32*x*Log[5]^2 + (6*E^4*x + 16*E^2*x*Log[5])*Log[2*x] + 2*E^4*x*Log[2*x]
^2)/E^4,x]
[Out]
(2*((E^4*x^2)/2 + 4*E^2*x^2*Log[5] + 8*x^2*Log[5]^2 + E^4*x^2*Log[2*x] + 4*E^2*x^2*Log[5]*Log[2*x] + (E^4*x^2*
Log[2*x]^2)/2))/E^4
________________________________________________________________________________________
fricas [B] time = 1.09, size = 62, normalized size = 3.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*exp(2)^2*log(2*x)^2+(16*x*exp(2)*log(5)+6*x*exp(2)^2)*log(2*x)+32*x*log(5)^2+24*x*exp(2)*log(5)
+4*x*exp(2)^2)/exp(2)^2,x, algorithm="fricas")
[Out]
(x^2*e^4*log(2*x)^2 + 8*x^2*e^2*log(5) + 16*x^2*log(5)^2 + x^2*e^4 + 2*(4*x^2*e^2*log(5) + x^2*e^4)*log(2*x))*
e^(-4)
________________________________________________________________________________________
giac [B] time = 0.20, size = 80, normalized size = 4.44
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*exp(2)^2*log(2*x)^2+(16*x*exp(2)*log(5)+6*x*exp(2)^2)*log(2*x)+32*x*log(5)^2+24*x*exp(2)*log(5)
+4*x*exp(2)^2)/exp(2)^2,x, algorithm="giac")
[Out]
1/2*(16*x^2*e^2*log(5)*log(2*x) + 16*x^2*e^2*log(5) + 32*x^2*log(5)^2 + 6*x^2*e^4*log(2*x) + x^2*e^4 + (2*x^2*
log(2*x)^2 - 2*x^2*log(2*x) + x^2)*e^4)*e^(-4)
________________________________________________________________________________________
maple [B] time = 0.04, size = 60, normalized size = 3.33
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
derivativedivides |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((2*x*exp(2)^2*ln(2*x)^2+(16*x*exp(2)*ln(5)+6*x*exp(2)^2)*ln(2*x)+32*x*ln(5)^2+24*x*exp(2)*ln(5)+4*x*exp(2)
^2)/exp(2)^2,x,method=_RETURNVERBOSE)
[Out]
x^2*ln(2*x)^2+2*exp(-2)*x^2*(exp(2)+4*ln(5))*ln(2*x)+8*exp(2)*ln(5)*exp(-4)*x^2+16*ln(5)^2*exp(-4)*x^2+exp(4)*
exp(-4)*x^2
________________________________________________________________________________________
maxima [B] time = 0.36, size = 91, normalized size = 5.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*exp(2)^2*log(2*x)^2+(16*x*exp(2)*log(5)+6*x*exp(2)^2)*log(2*x)+32*x*log(5)^2+24*x*exp(2)*log(5)
+4*x*exp(2)^2)/exp(2)^2,x, algorithm="maxima")
[Out]
1/2*((2*log(2*x)^2 - 2*log(2*x) + 1)*x^2*e^4 + 24*x^2*e^2*log(5) + 32*x^2*log(5)^2 - (8*e^2*log(5) + 3*e^4)*x^
2 + 4*x^2*e^4 + 2*(8*x^2*e^2*log(5) + 3*x^2*e^4)*log(2*x))*e^(-4)
________________________________________________________________________________________
mupad [B] time = 4.24, size = 20, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(exp(-4)*(4*x*exp(4) + 32*x*log(5)^2 + log(2*x)*(6*x*exp(4) + 16*x*exp(2)*log(5)) + 24*x*exp(2)*log(5) + 2*
x*log(2*x)^2*exp(4)),x)
[Out]
x^2*exp(-4)*(exp(2) + log(625) + log(2*x)*exp(2))^2
________________________________________________________________________________________
sympy [B] time = 0.21, size = 60, normalized size = 3.33
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((2*x*exp(2)**2*ln(2*x)**2+(16*x*exp(2)*ln(5)+6*x*exp(2)**2)*ln(2*x)+32*x*ln(5)**2+24*x*exp(2)*ln(5)+
4*x*exp(2)**2)/exp(2)**2,x)
[Out]
x**2*log(2*x)**2 + x**2*(16*log(5)**2 + exp(4) + 8*exp(2)*log(5))*exp(-4) + (8*x**2*log(5) + 2*x**2*exp(2))*ex
p(-2)*log(2*x)
________________________________________________________________________________________