Optimal. Leaf size=18 \[ \left (x+\frac {4 x \log (5)}{e^2}+x \log (2 x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 80, normalized size of antiderivative = 4.44, number of steps used = 9, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {6, 12, 2304, 2305} \begin {gather*} \frac {x^2}{2}+x^2 \log ^2(2 x)+x^2 \left (3+\frac {8 \log (5)}{e^2}\right ) \log (2 x)-x^2 \log (2 x)+\frac {2 x^2 \left (e^2+\log (25)\right ) \left (e^2+\log (625)\right )}{e^4}-\frac {1}{2} x^2 \left (3+\frac {8 \log (5)}{e^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 x \log ^2(5)+x \left (4 e^4+24 e^2 \log (5)\right )+\left (6 e^4 x+16 e^2 x \log (5)\right ) \log (2 x)+2 e^4 x \log ^2(2 x)}{e^4} \, dx\\ &=\int \frac {x \left (4 e^4+24 e^2 \log (5)+32 \log ^2(5)\right )+\left (6 e^4 x+16 e^2 x \log (5)\right ) \log (2 x)+2 e^4 x \log ^2(2 x)}{e^4} \, dx\\ &=\frac {\int \left (x \left (4 e^4+24 e^2 \log (5)+32 \log ^2(5)\right )+\left (6 e^4 x+16 e^2 x \log (5)\right ) \log (2 x)+2 e^4 x \log ^2(2 x)\right ) \, dx}{e^4}\\ &=\frac {2 x^2 \left (e^2+\log (25)\right ) \left (e^2+\log (625)\right )}{e^4}+2 \int x \log ^2(2 x) \, dx+\frac {\int \left (6 e^4 x+16 e^2 x \log (5)\right ) \log (2 x) \, dx}{e^4}\\ &=\frac {2 x^2 \left (e^2+\log (25)\right ) \left (e^2+\log (625)\right )}{e^4}+x^2 \log ^2(2 x)-2 \int x \log (2 x) \, dx+\frac {\int x \left (6 e^4+16 e^2 \log (5)\right ) \log (2 x) \, dx}{e^4}\\ &=\frac {x^2}{2}+\frac {2 x^2 \left (e^2+\log (25)\right ) \left (e^2+\log (625)\right )}{e^4}-x^2 \log (2 x)+x^2 \log ^2(2 x)+\left (2 \left (3+\frac {8 \log (5)}{e^2}\right )\right ) \int x \log (2 x) \, dx\\ &=\frac {x^2}{2}-\frac {1}{2} x^2 \left (3+\frac {8 \log (5)}{e^2}\right )+\frac {2 x^2 \left (e^2+\log (25)\right ) \left (e^2+\log (625)\right )}{e^4}-x^2 \log (2 x)+x^2 \left (3+\frac {8 \log (5)}{e^2}\right ) \log (2 x)+x^2 \log ^2(2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.05, size = 76, normalized size = 4.22 \begin {gather*} \frac {2 \left (\frac {e^4 x^2}{2}+4 e^2 x^2 \log (5)+8 x^2 \log ^2(5)+e^4 x^2 \log (2 x)+4 e^2 x^2 \log (5) \log (2 x)+\frac {1}{2} e^4 x^2 \log ^2(2 x)\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.09, size = 62, normalized size = 3.44 \begin {gather*} {\left (x^{2} e^{4} \log \left (2 \, x\right )^{2} + 8 \, x^{2} e^{2} \log \relax (5) + 16 \, x^{2} \log \relax (5)^{2} + x^{2} e^{4} + 2 \, {\left (4 \, x^{2} e^{2} \log \relax (5) + x^{2} e^{4}\right )} \log \left (2 \, x\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 80, normalized size = 4.44 \begin {gather*} \frac {1}{2} \, {\left (16 \, x^{2} e^{2} \log \relax (5) \log \left (2 \, x\right ) + 16 \, x^{2} e^{2} \log \relax (5) + 32 \, x^{2} \log \relax (5)^{2} + 6 \, x^{2} e^{4} \log \left (2 \, x\right ) + x^{2} e^{4} + {\left (2 \, x^{2} \log \left (2 \, x\right )^{2} - 2 \, x^{2} \log \left (2 \, x\right ) + x^{2}\right )} e^{4}\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 60, normalized size = 3.33
method | result | size |
risch | \(x^{2} \ln \left (2 x \right )^{2}+2 \,{\mathrm e}^{-2} x^{2} \left ({\mathrm e}^{2}+4 \ln \relax (5)\right ) \ln \left (2 x \right )+8 \,{\mathrm e}^{2} \ln \relax (5) {\mathrm e}^{-4} x^{2}+16 \ln \relax (5)^{2} {\mathrm e}^{-4} x^{2}+{\mathrm e}^{4} {\mathrm e}^{-4} x^{2}\) | \(60\) |
norman | \(\left (x^{2} {\mathrm e}^{2} \ln \left (2 x \right )^{2}+\left (2 \,{\mathrm e}^{2}+8 \ln \relax (5)\right ) x^{2} \ln \left (2 x \right )+\left ({\mathrm e}^{4}+8 \,{\mathrm e}^{2} \ln \relax (5)+16 \ln \relax (5)^{2}\right ) {\mathrm e}^{-2} x^{2}\right ) {\mathrm e}^{-2}\) | \(61\) |
default | \({\mathrm e}^{-4} \left (2 \,{\mathrm e}^{4} x^{2} \ln \left (2 x \right )+x^{2} {\mathrm e}^{4}+8 \,{\mathrm e}^{2} \ln \relax (5) x^{2} \ln \left (2 x \right )+8 \,{\mathrm e}^{2} \ln \relax (5) x^{2}+16 x^{2} \ln \relax (5)^{2}+{\mathrm e}^{4} x^{2} \ln \left (2 x \right )^{2}\right )\) | \(73\) |
derivativedivides | \(\frac {{\mathrm e}^{-4} \left (4 \,{\mathrm e}^{4} x^{2} \ln \left (2 x \right )+2 x^{2} {\mathrm e}^{4}+16 \,{\mathrm e}^{2} \ln \relax (5) x^{2} \ln \left (2 x \right )+16 \,{\mathrm e}^{2} \ln \relax (5) x^{2}+2 \,{\mathrm e}^{4} x^{2} \ln \left (2 x \right )^{2}+32 x^{2} \ln \relax (5)^{2}\right )}{2}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 91, normalized size = 5.06 \begin {gather*} \frac {1}{2} \, {\left ({\left (2 \, \log \left (2 \, x\right )^{2} - 2 \, \log \left (2 \, x\right ) + 1\right )} x^{2} e^{4} + 24 \, x^{2} e^{2} \log \relax (5) + 32 \, x^{2} \log \relax (5)^{2} - {\left (8 \, e^{2} \log \relax (5) + 3 \, e^{4}\right )} x^{2} + 4 \, x^{2} e^{4} + 2 \, {\left (8 \, x^{2} e^{2} \log \relax (5) + 3 \, x^{2} e^{4}\right )} \log \left (2 \, x\right )\right )} e^{\left (-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 20, normalized size = 1.11 \begin {gather*} x^2\,{\mathrm {e}}^{-4}\,{\left ({\mathrm {e}}^2+\ln \left (625\right )+\ln \left (2\,x\right )\,{\mathrm {e}}^2\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 60, normalized size = 3.33 \begin {gather*} x^{2} \log {\left (2 x \right )}^{2} + \frac {x^{2} \left (16 \log {\relax (5 )}^{2} + e^{4} + 8 e^{2} \log {\relax (5 )}\right )}{e^{4}} + \frac {\left (8 x^{2} \log {\relax (5 )} + 2 x^{2} e^{2}\right ) \log {\left (2 x \right )}}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________