3.69.65 (6+5eex+x+2x)dx

Optimal. Leaf size=20 5(2+eex+15(4+(3+x)2))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 14, normalized size of antiderivative = 0.70, number of steps used = 3, number of rules used = 2, integrand size = 14, number of rulesintegrand size = 0.143, Rules used = {2282, 2194} x2+6x+5eex

Antiderivative was successfully verified.

[In]

Int[6 + 5*E^(E^x + x) + 2*x,x]

[Out]

5*E^E^x + 6*x + x^2

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps

integral=6x+x2+5eex+xdx=6x+x2+5Subst(exdx,x,ex)=5eex+6x+x2

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 14, normalized size = 0.70 5eex+6x+x2

Antiderivative was successfully verified.

[In]

Integrate[6 + 5*E^(E^x + x) + 2*x,x]

[Out]

5*E^E^x + 6*x + x^2

________________________________________________________________________________________

fricas [A]  time = 0.97, size = 23, normalized size = 1.15 ((x2+6x)ex+5e(x+ex))e(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(5*exp(x)*exp(exp(x))+2*x+6,x, algorithm="fricas")

[Out]

((x^2 + 6*x)*e^x + 5*e^(x + e^x))*e^(-x)

________________________________________________________________________________________

giac [A]  time = 0.25, size = 12, normalized size = 0.60 x2+6x+5e(ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(5*exp(x)*exp(exp(x))+2*x+6,x, algorithm="giac")

[Out]

x^2 + 6*x + 5*e^(e^x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 13, normalized size = 0.65




method result size



default x2+6x+5eex 13
norman x2+6x+5eex 13
risch x2+6x+5eex 13



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(5*exp(x)*exp(exp(x))+2*x+6,x,method=_RETURNVERBOSE)

[Out]

x^2+6*x+5*exp(exp(x))

________________________________________________________________________________________

maxima [A]  time = 0.35, size = 12, normalized size = 0.60 x2+6x+5e(ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(5*exp(x)*exp(exp(x))+2*x+6,x, algorithm="maxima")

[Out]

x^2 + 6*x + 5*e^(e^x)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 12, normalized size = 0.60 6x+5eex+x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*x + 5*exp(exp(x))*exp(x) + 6,x)

[Out]

6*x + 5*exp(exp(x)) + x^2

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 12, normalized size = 0.60 x2+6x+5eex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(5*exp(x)*exp(exp(x))+2*x+6,x)

[Out]

x**2 + 6*x + 5*exp(exp(x))

________________________________________________________________________________________