3.69.76 ex3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x))((2x2+(4x2+x5)log(x))log(3x)+(log(x)+(1+2x2log(x))log(3x))log(x4log2(x))+(2+(42x3)log(x))log(3x)log(log(3x)log(x))+xlog(x)log(3x)log2(log(3x)log(x)))x5log(x)log(3x)2x3log(x)log(3x)log(log(3x)log(x))+xlog(x)log(3x)log2(log(3x)log(x))dx

Optimal. Leaf size=32 ex+log(x4log2(x))x2+log(log(3x)log(x))

________________________________________________________________________________________

Rubi [F]  time = 19.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))((2x2+(4x2+x5)log(x))log(3x)+(log(x)+(1+2x2log(x))log(3x))log(x4log2(x))+(2+(42x3)log(x))log(3x)log(log(3x)log(x))+xlog(x)log(3x)log2(log(3x)log(x)))x5log(x)log(3x)2x3log(x)log(3x)log(log(3x)log(x))+xlog(x)log(3x)log2(log(3x)log(x))dx

Verification is not applicable to the result.

[In]

Int[(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*((2*x^2 + (-4*x^2 +
 x^5)*Log[x])*Log[3*x] + (-Log[x] + (1 + 2*x^2*Log[x])*Log[3*x])*Log[x^4/Log[x]^2] + (-2 + (4 - 2*x^3)*Log[x])
*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2))/(x^5*Log[x]*Log[3*x] - 2*x^3*Log[x
]*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2),x]

[Out]

Defer[Int][E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]])), x] + Log[9]*
Defer[Int][(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*x*Log[x^4/Lo
g[x]^2])/(Log[3*x]*(x^2 - Log[Log[3*x]/Log[x]])^2), x] + Log[3]*Defer[Int][(E^((-x^3 + Log[x^4/Log[x]^2] + x*L
og[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*Log[x^4/Log[x]^2])/(x*Log[x]*Log[3*x]*(x^2 - Log[Log[3*x]/
Log[x]])^2), x] + 2*Defer[Int][(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Lo
g[x]]))*x*Log[x]*Log[x^4/Log[x]^2])/(Log[3*x]*(x^2 - Log[Log[3*x]/Log[x]])^2), x] - 4*Defer[Int][E^((-x^3 + Lo
g[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))/(x*(x^2 - Log[Log[3*x]/Log[x]])), x]
+ 2*Defer[Int][E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))/(x*Log[x]
*(x^2 - Log[Log[3*x]/Log[x]])), x]

Rubi steps

integral=exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))((2x2+(4x2+x5)log(x))log(3x)+(log(x)+(1+2x2log(x))log(3x))log(x4log2(x))+(2+(42x3)log(x))log(3x)log(log(3x)log(x))+xlog(x)log(3x)log2(log(3x)log(x)))xlog(x)log(3x)(x2log(log(3x)log(x)))2dx=(exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))+exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))(log(3)+x2log(9)log(x)+2x2log2(x))log(x4log2(x))xlog(x)log(3x)(x2log(log(3x)log(x)))22exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))(1+2log(x))xlog(x)(x2log(log(3x)log(x))))dx=(2exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))(1+2log(x))xlog(x)(x2log(log(3x)log(x)))dx)+exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))dx+exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))(log(3)+x2log(9)log(x)+2x2log2(x))log(x4log2(x))xlog(x)log(3x)(x2log(log(3x)log(x)))2dx=(2(2exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))x(x2log(log(3x)log(x)))exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))xlog(x)(x2log(log(3x)log(x))))dx)+exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))dx+(exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))xlog(9)log(x4log2(x))log(3x)(x2log(log(3x)log(x)))2+exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))log(3)log(x4log2(x))xlog(x)log(3x)(x2log(log(3x)log(x)))2+2exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))xlog(x)log(x4log2(x))log(3x)(x2log(log(3x)log(x)))2)dx=2exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))xlog(x)log(x4log2(x))log(3x)(x2log(log(3x)log(x)))2dx+2exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))xlog(x)(x2log(log(3x)log(x)))dx4exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))x(x2log(log(3x)log(x)))dx+log(3)exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))log(x4log2(x))xlog(x)log(3x)(x2log(log(3x)log(x)))2dx+log(9)exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))xlog(x4log2(x))log(3x)(x2log(log(3x)log(x)))2dx+exp(x3+log(x4log2(x))+xlog(log(3x)log(x))x2+log(log(3x)log(x)))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.52, size = 31, normalized size = 0.97 ex(x4log2(x))1x2+log(log(3x)log(x))

Antiderivative was successfully verified.

[In]

Integrate[(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*((2*x^2 + (-4
*x^2 + x^5)*Log[x])*Log[3*x] + (-Log[x] + (1 + 2*x^2*Log[x])*Log[3*x])*Log[x^4/Log[x]^2] + (-2 + (4 - 2*x^3)*L
og[x])*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2))/(x^5*Log[x]*Log[3*x] - 2*x^3
*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2),x]

[Out]

E^x*(x^4/Log[x]^2)^(-x^2 + Log[Log[3*x]/Log[x]])^(-1)

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 50, normalized size = 1.56 e(x3xlog(log(3)+log(x)log(x))log(x4log(x)2)x2log(log(3)+log(x)log(x)))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*log(x)*log(3*x)*log(log(3*x)/log(x))^2+((-2*x^3+4)*log(x)-2)*log(3*x)*log(log(3*x)/log(x))+((2*x^
2*log(x)+1)*log(3*x)-log(x))*log(x^4/log(x)^2)+((x^5-4*x^2)*log(x)+2*x^2)*log(3*x))*exp((x*log(log(3*x)/log(x)
)+log(x^4/log(x)^2)-x^3)/(log(log(3*x)/log(x))-x^2))/(x*log(x)*log(3*x)*log(log(3*x)/log(x))^2-2*x^3*log(x)*lo
g(3*x)*log(log(3*x)/log(x))+x^5*log(x)*log(3*x)),x, algorithm="fricas")

[Out]

e^((x^3 - x*log((log(3) + log(x))/log(x)) - log(x^4/log(x)^2))/(x^2 - log((log(3) + log(x))/log(x))))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 undef

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*log(x)*log(3*x)*log(log(3*x)/log(x))^2+((-2*x^3+4)*log(x)-2)*log(3*x)*log(log(3*x)/log(x))+((2*x^
2*log(x)+1)*log(3*x)-log(x))*log(x^4/log(x)^2)+((x^5-4*x^2)*log(x)+2*x^2)*log(3*x))*exp((x*log(log(3*x)/log(x)
)+log(x^4/log(x)^2)-x^3)/(log(log(3*x)/log(x))-x^2))/(x*log(x)*log(3*x)*log(log(3*x)/log(x))^2-2*x^3*log(x)*lo
g(3*x)*log(log(3*x)/log(x))+x^5*log(x)*log(3*x)),x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [F]  time = 180.00, size = 0, normalized size = 0.00 (xln(x)ln(3x)ln(ln(3x)ln(x))2+((2x3+4)ln(x)2)ln(3x)ln(ln(3x)ln(x))+((2x2ln(x)+1)ln(3x)ln(x))ln(x4ln(x)2)+((x54x2)ln(x)+2x2)ln(3x))exln(ln(3x)ln(x))+ln(x4ln(x)2)x3ln(ln(3x)ln(x))x2xln(x)ln(3x)ln(ln(3x)ln(x))22x3ln(x)ln(3x)ln(ln(3x)ln(x))+x5ln(x)ln(3x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2+((-2*x^3+4)*ln(x)-2)*ln(3*x)*ln(ln(3*x)/ln(x))+((2*x^2*ln(x)+1)*ln(3*
x)-ln(x))*ln(x^4/ln(x)^2)+((x^5-4*x^2)*ln(x)+2*x^2)*ln(3*x))*exp((x*ln(ln(3*x)/ln(x))+ln(x^4/ln(x)^2)-x^3)/(ln
(ln(3*x)/ln(x))-x^2))/(x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2-2*x^3*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))+x^5*ln(x)*ln(
3*x)),x)

[Out]

int((x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2+((-2*x^3+4)*ln(x)-2)*ln(3*x)*ln(ln(3*x)/ln(x))+((2*x^2*ln(x)+1)*ln(3*
x)-ln(x))*ln(x^4/ln(x)^2)+((x^5-4*x^2)*ln(x)+2*x^2)*ln(3*x))*exp((x*ln(ln(3*x)/ln(x))+ln(x^4/ln(x)^2)-x^3)/(ln
(ln(3*x)/ln(x))-x^2))/(x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2-2*x^3*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))+x^5*ln(x)*ln(
3*x)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 (xlog(3x)log(x)log(log(3x)log(x))22((x32)log(x)+1)log(3x)log(log(3x)log(x))+((2x2log(x)+1)log(3x)log(x))log(x4log(x)2)+(2x2+(x54x2)log(x))log(3x))e(x3xlog(log(3x)log(x))log(x4log(x)2)x2log(log(3x)log(x)))x5log(3x)log(x)2x3log(3x)log(x)log(log(3x)log(x))+xlog(3x)log(x)log(log(3x)log(x))2dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*log(x)*log(3*x)*log(log(3*x)/log(x))^2+((-2*x^3+4)*log(x)-2)*log(3*x)*log(log(3*x)/log(x))+((2*x^
2*log(x)+1)*log(3*x)-log(x))*log(x^4/log(x)^2)+((x^5-4*x^2)*log(x)+2*x^2)*log(3*x))*exp((x*log(log(3*x)/log(x)
)+log(x^4/log(x)^2)-x^3)/(log(log(3*x)/log(x))-x^2))/(x*log(x)*log(3*x)*log(log(3*x)/log(x))^2-2*x^3*log(x)*lo
g(3*x)*log(log(3*x)/log(x))+x^5*log(x)*log(3*x)),x, algorithm="maxima")

[Out]

integrate((x*log(3*x)*log(x)*log(log(3*x)/log(x))^2 - 2*((x^3 - 2)*log(x) + 1)*log(3*x)*log(log(3*x)/log(x)) +
 ((2*x^2*log(x) + 1)*log(3*x) - log(x))*log(x^4/log(x)^2) + (2*x^2 + (x^5 - 4*x^2)*log(x))*log(3*x))*e^((x^3 -
 x*log(log(3*x)/log(x)) - log(x^4/log(x)^2))/(x^2 - log(log(3*x)/log(x))))/(x^5*log(3*x)*log(x) - 2*x^3*log(3*
x)*log(x)*log(log(3*x)/log(x)) + x*log(3*x)*log(x)*log(log(3*x)/log(x))^2), x)

________________________________________________________________________________________

mupad [B]  time = 5.48, size = 100, normalized size = 3.12 ex3ln(ln(3x)ln(x))x2(1ln(x)2)1ln(ln(3x)ln(x))x2(x4)1ln(ln(3x)ln(x))x2(ln(3x)ln(x))xln(ln(3x)ln(x))x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((log(x^4/log(x)^2) + x*log(log(3*x)/log(x)) - x^3)/(log(log(3*x)/log(x)) - x^2))*(log(3*x)*(log(x)*(
4*x^2 - x^5) - 2*x^2) + log(x^4/log(x)^2)*(log(x) - log(3*x)*(2*x^2*log(x) + 1)) + log(3*x)*log(log(3*x)/log(x
))*(log(x)*(2*x^3 - 4) + 2) - x*log(3*x)*log(log(3*x)/log(x))^2*log(x)))/(x^5*log(3*x)*log(x) + x*log(3*x)*log
(log(3*x)/log(x))^2*log(x) - 2*x^3*log(3*x)*log(log(3*x)/log(x))*log(x)),x)

[Out]

exp(-x^3/(log(log(3*x)/log(x)) - x^2))*(1/log(x)^2)^(1/(log(log(3*x)/log(x)) - x^2))*(x^4)^(1/(log(log(3*x)/lo
g(x)) - x^2))*(log(3*x)/log(x))^(x/(log(log(3*x)/log(x)) - x^2))

________________________________________________________________________________________

sympy [A]  time = 61.87, size = 42, normalized size = 1.31 ex3+xlog(log(x)+log(3)log(x))+log(x4log(x)2)x2+log(log(x)+log(3)log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))**2+((-2*x**3+4)*ln(x)-2)*ln(3*x)*ln(ln(3*x)/ln(x))+((2*x**2*ln(x)
+1)*ln(3*x)-ln(x))*ln(x**4/ln(x)**2)+((x**5-4*x**2)*ln(x)+2*x**2)*ln(3*x))*exp((x*ln(ln(3*x)/ln(x))+ln(x**4/ln
(x)**2)-x**3)/(ln(ln(3*x)/ln(x))-x**2))/(x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))**2-2*x**3*ln(x)*ln(3*x)*ln(ln(3*x)/
ln(x))+x**5*ln(x)*ln(3*x)),x)

[Out]

exp((-x**3 + x*log((log(x) + log(3))/log(x)) + log(x**4/log(x)**2))/(-x**2 + log((log(x) + log(3))/log(x))))

________________________________________________________________________________________