Optimal. Leaf size=32 \[ e^{x+\frac {\log \left (\frac {x^4}{\log ^2(x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 19.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \left (\left (2 x^2+\left (-4 x^2+x^5\right ) \log (x)\right ) \log (3 x)+\left (-\log (x)+\left (1+2 x^2 \log (x)\right ) \log (3 x)\right ) \log \left (\frac {x^4}{\log ^2(x)}\right )+\left (-2+\left (4-2 x^3\right ) \log (x)\right ) \log (3 x) \log \left (\frac {\log (3 x)}{\log (x)}\right )+x \log (x) \log (3 x) \log ^2\left (\frac {\log (3 x)}{\log (x)}\right )\right )}{x^5 \log (x) \log (3 x)-2 x^3 \log (x) \log (3 x) \log \left (\frac {\log (3 x)}{\log (x)}\right )+x \log (x) \log (3 x) \log ^2\left (\frac {\log (3 x)}{\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \left (\left (2 x^2+\left (-4 x^2+x^5\right ) \log (x)\right ) \log (3 x)+\left (-\log (x)+\left (1+2 x^2 \log (x)\right ) \log (3 x)\right ) \log \left (\frac {x^4}{\log ^2(x)}\right )+\left (-2+\left (4-2 x^3\right ) \log (x)\right ) \log (3 x) \log \left (\frac {\log (3 x)}{\log (x)}\right )+x \log (x) \log (3 x) \log ^2\left (\frac {\log (3 x)}{\log (x)}\right )\right )}{x \log (x) \log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2} \, dx\\ &=\int \left (\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right )+\frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \left (\log (3)+x^2 \log (9) \log (x)+2 x^2 \log ^2(x)\right ) \log \left (\frac {x^4}{\log ^2(x)}\right )}{x \log (x) \log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2}-\frac {2 \exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) (-1+2 \log (x))}{x \log (x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) (-1+2 \log (x))}{x \log (x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )} \, dx\right )+\int \exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \, dx+\int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \left (\log (3)+x^2 \log (9) \log (x)+2 x^2 \log ^2(x)\right ) \log \left (\frac {x^4}{\log ^2(x)}\right )}{x \log (x) \log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2} \, dx\\ &=-\left (2 \int \left (\frac {2 \exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right )}{x \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )}-\frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right )}{x \log (x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )}\right ) \, dx\right )+\int \exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \, dx+\int \left (\frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) x \log (9) \log \left (\frac {x^4}{\log ^2(x)}\right )}{\log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2}+\frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \log (3) \log \left (\frac {x^4}{\log ^2(x)}\right )}{x \log (x) \log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2}+\frac {2 \exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) x \log (x) \log \left (\frac {x^4}{\log ^2(x)}\right )}{\log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2}\right ) \, dx\\ &=2 \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) x \log (x) \log \left (\frac {x^4}{\log ^2(x)}\right )}{\log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2} \, dx+2 \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right )}{x \log (x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )} \, dx-4 \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right )}{x \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )} \, dx+\log (3) \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \log \left (\frac {x^4}{\log ^2(x)}\right )}{x \log (x) \log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2} \, dx+\log (9) \int \frac {\exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) x \log \left (\frac {x^4}{\log ^2(x)}\right )}{\log (3 x) \left (x^2-\log \left (\frac {\log (3 x)}{\log (x)}\right )\right )^2} \, dx+\int \exp \left (\frac {-x^3+\log \left (\frac {x^4}{\log ^2(x)}\right )+x \log \left (\frac {\log (3 x)}{\log (x)}\right )}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 31, normalized size = 0.97 \begin {gather*} e^x \left (\frac {x^4}{\log ^2(x)}\right )^{\frac {1}{-x^2+\log \left (\frac {\log (3 x)}{\log (x)}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 50, normalized size = 1.56 \begin {gather*} e^{\left (\frac {x^{3} - x \log \left (\frac {\log \relax (3) + \log \relax (x)}{\log \relax (x)}\right ) - \log \left (\frac {x^{4}}{\log \relax (x)^{2}}\right )}{x^{2} - \log \left (\frac {\log \relax (3) + \log \relax (x)}{\log \relax (x)}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (x \ln \relax (x ) \ln \left (3 x \right ) \ln \left (\frac {\ln \left (3 x \right )}{\ln \relax (x )}\right )^{2}+\left (\left (-2 x^{3}+4\right ) \ln \relax (x )-2\right ) \ln \left (3 x \right ) \ln \left (\frac {\ln \left (3 x \right )}{\ln \relax (x )}\right )+\left (\left (2 x^{2} \ln \relax (x )+1\right ) \ln \left (3 x \right )-\ln \relax (x )\right ) \ln \left (\frac {x^{4}}{\ln \relax (x )^{2}}\right )+\left (\left (x^{5}-4 x^{2}\right ) \ln \relax (x )+2 x^{2}\right ) \ln \left (3 x \right )\right ) {\mathrm e}^{\frac {x \ln \left (\frac {\ln \left (3 x \right )}{\ln \relax (x )}\right )+\ln \left (\frac {x^{4}}{\ln \relax (x )^{2}}\right )-x^{3}}{\ln \left (\frac {\ln \left (3 x \right )}{\ln \relax (x )}\right )-x^{2}}}}{x \ln \relax (x ) \ln \left (3 x \right ) \ln \left (\frac {\ln \left (3 x \right )}{\ln \relax (x )}\right )^{2}-2 x^{3} \ln \relax (x ) \ln \left (3 x \right ) \ln \left (\frac {\ln \left (3 x \right )}{\ln \relax (x )}\right )+x^{5} \ln \relax (x ) \ln \left (3 x \right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x \log \left (3 \, x\right ) \log \relax (x) \log \left (\frac {\log \left (3 \, x\right )}{\log \relax (x)}\right )^{2} - 2 \, {\left ({\left (x^{3} - 2\right )} \log \relax (x) + 1\right )} \log \left (3 \, x\right ) \log \left (\frac {\log \left (3 \, x\right )}{\log \relax (x)}\right ) + {\left ({\left (2 \, x^{2} \log \relax (x) + 1\right )} \log \left (3 \, x\right ) - \log \relax (x)\right )} \log \left (\frac {x^{4}}{\log \relax (x)^{2}}\right ) + {\left (2 \, x^{2} + {\left (x^{5} - 4 \, x^{2}\right )} \log \relax (x)\right )} \log \left (3 \, x\right )\right )} e^{\left (\frac {x^{3} - x \log \left (\frac {\log \left (3 \, x\right )}{\log \relax (x)}\right ) - \log \left (\frac {x^{4}}{\log \relax (x)^{2}}\right )}{x^{2} - \log \left (\frac {\log \left (3 \, x\right )}{\log \relax (x)}\right )}\right )}}{x^{5} \log \left (3 \, x\right ) \log \relax (x) - 2 \, x^{3} \log \left (3 \, x\right ) \log \relax (x) \log \left (\frac {\log \left (3 \, x\right )}{\log \relax (x)}\right ) + x \log \left (3 \, x\right ) \log \relax (x) \log \left (\frac {\log \left (3 \, x\right )}{\log \relax (x)}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.48, size = 100, normalized size = 3.12 \begin {gather*} {\mathrm {e}}^{-\frac {x^3}{\ln \left (\frac {\ln \left (3\,x\right )}{\ln \relax (x)}\right )-x^2}}\,{\left (\frac {1}{{\ln \relax (x)}^2}\right )}^{\frac {1}{\ln \left (\frac {\ln \left (3\,x\right )}{\ln \relax (x)}\right )-x^2}}\,{\left (x^4\right )}^{\frac {1}{\ln \left (\frac {\ln \left (3\,x\right )}{\ln \relax (x)}\right )-x^2}}\,{\left (\frac {\ln \left (3\,x\right )}{\ln \relax (x)}\right )}^{\frac {x}{\ln \left (\frac {\ln \left (3\,x\right )}{\ln \relax (x)}\right )-x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 61.87, size = 42, normalized size = 1.31 \begin {gather*} e^{\frac {- x^{3} + x \log {\left (\frac {\log {\relax (x )} + \log {\relax (3 )}}{\log {\relax (x )}} \right )} + \log {\left (\frac {x^{4}}{\log {\relax (x )}^{2}} \right )}}{- x^{2} + \log {\left (\frac {\log {\relax (x )} + \log {\relax (3 )}}{\log {\relax (x )}} \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________