3.69.76
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 19.78, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*((2*x^2 + (-4*x^2 +
x^5)*Log[x])*Log[3*x] + (-Log[x] + (1 + 2*x^2*Log[x])*Log[3*x])*Log[x^4/Log[x]^2] + (-2 + (4 - 2*x^3)*Log[x])
*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2))/(x^5*Log[x]*Log[3*x] - 2*x^3*Log[x
]*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2),x]
[Out]
Defer[Int][E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]])), x] + Log[9]*
Defer[Int][(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*x*Log[x^4/Lo
g[x]^2])/(Log[3*x]*(x^2 - Log[Log[3*x]/Log[x]])^2), x] + Log[3]*Defer[Int][(E^((-x^3 + Log[x^4/Log[x]^2] + x*L
og[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*Log[x^4/Log[x]^2])/(x*Log[x]*Log[3*x]*(x^2 - Log[Log[3*x]/
Log[x]])^2), x] + 2*Defer[Int][(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Lo
g[x]]))*x*Log[x]*Log[x^4/Log[x]^2])/(Log[3*x]*(x^2 - Log[Log[3*x]/Log[x]])^2), x] - 4*Defer[Int][E^((-x^3 + Lo
g[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))/(x*(x^2 - Log[Log[3*x]/Log[x]])), x]
+ 2*Defer[Int][E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))/(x*Log[x]
*(x^2 - Log[Log[3*x]/Log[x]])), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 31, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[(E^((-x^3 + Log[x^4/Log[x]^2] + x*Log[Log[3*x]/Log[x]])/(-x^2 + Log[Log[3*x]/Log[x]]))*((2*x^2 + (-4
*x^2 + x^5)*Log[x])*Log[3*x] + (-Log[x] + (1 + 2*x^2*Log[x])*Log[3*x])*Log[x^4/Log[x]^2] + (-2 + (4 - 2*x^3)*L
og[x])*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2))/(x^5*Log[x]*Log[3*x] - 2*x^3
*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]] + x*Log[x]*Log[3*x]*Log[Log[3*x]/Log[x]]^2),x]
[Out]
E^x*(x^4/Log[x]^2)^(-x^2 + Log[Log[3*x]/Log[x]])^(-1)
________________________________________________________________________________________
fricas [A] time = 0.56, size = 50, normalized size = 1.56
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x*log(x)*log(3*x)*log(log(3*x)/log(x))^2+((-2*x^3+4)*log(x)-2)*log(3*x)*log(log(3*x)/log(x))+((2*x^
2*log(x)+1)*log(3*x)-log(x))*log(x^4/log(x)^2)+((x^5-4*x^2)*log(x)+2*x^2)*log(3*x))*exp((x*log(log(3*x)/log(x)
)+log(x^4/log(x)^2)-x^3)/(log(log(3*x)/log(x))-x^2))/(x*log(x)*log(3*x)*log(log(3*x)/log(x))^2-2*x^3*log(x)*lo
g(3*x)*log(log(3*x)/log(x))+x^5*log(x)*log(3*x)),x, algorithm="fricas")
[Out]
e^((x^3 - x*log((log(3) + log(x))/log(x)) - log(x^4/log(x)^2))/(x^2 - log((log(3) + log(x))/log(x))))
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x*log(x)*log(3*x)*log(log(3*x)/log(x))^2+((-2*x^3+4)*log(x)-2)*log(3*x)*log(log(3*x)/log(x))+((2*x^
2*log(x)+1)*log(3*x)-log(x))*log(x^4/log(x)^2)+((x^5-4*x^2)*log(x)+2*x^2)*log(3*x))*exp((x*log(log(3*x)/log(x)
)+log(x^4/log(x)^2)-x^3)/(log(log(3*x)/log(x))-x^2))/(x*log(x)*log(3*x)*log(log(3*x)/log(x))^2-2*x^3*log(x)*lo
g(3*x)*log(log(3*x)/log(x))+x^5*log(x)*log(3*x)),x, algorithm="giac")
[Out]
undef
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2+((-2*x^3+4)*ln(x)-2)*ln(3*x)*ln(ln(3*x)/ln(x))+((2*x^2*ln(x)+1)*ln(3*
x)-ln(x))*ln(x^4/ln(x)^2)+((x^5-4*x^2)*ln(x)+2*x^2)*ln(3*x))*exp((x*ln(ln(3*x)/ln(x))+ln(x^4/ln(x)^2)-x^3)/(ln
(ln(3*x)/ln(x))-x^2))/(x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2-2*x^3*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))+x^5*ln(x)*ln(
3*x)),x)
[Out]
int((x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2+((-2*x^3+4)*ln(x)-2)*ln(3*x)*ln(ln(3*x)/ln(x))+((2*x^2*ln(x)+1)*ln(3*
x)-ln(x))*ln(x^4/ln(x)^2)+((x^5-4*x^2)*ln(x)+2*x^2)*ln(3*x))*exp((x*ln(ln(3*x)/ln(x))+ln(x^4/ln(x)^2)-x^3)/(ln
(ln(3*x)/ln(x))-x^2))/(x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))^2-2*x^3*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))+x^5*ln(x)*ln(
3*x)),x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x*log(x)*log(3*x)*log(log(3*x)/log(x))^2+((-2*x^3+4)*log(x)-2)*log(3*x)*log(log(3*x)/log(x))+((2*x^
2*log(x)+1)*log(3*x)-log(x))*log(x^4/log(x)^2)+((x^5-4*x^2)*log(x)+2*x^2)*log(3*x))*exp((x*log(log(3*x)/log(x)
)+log(x^4/log(x)^2)-x^3)/(log(log(3*x)/log(x))-x^2))/(x*log(x)*log(3*x)*log(log(3*x)/log(x))^2-2*x^3*log(x)*lo
g(3*x)*log(log(3*x)/log(x))+x^5*log(x)*log(3*x)),x, algorithm="maxima")
[Out]
integrate((x*log(3*x)*log(x)*log(log(3*x)/log(x))^2 - 2*((x^3 - 2)*log(x) + 1)*log(3*x)*log(log(3*x)/log(x)) +
((2*x^2*log(x) + 1)*log(3*x) - log(x))*log(x^4/log(x)^2) + (2*x^2 + (x^5 - 4*x^2)*log(x))*log(3*x))*e^((x^3 -
x*log(log(3*x)/log(x)) - log(x^4/log(x)^2))/(x^2 - log(log(3*x)/log(x))))/(x^5*log(3*x)*log(x) - 2*x^3*log(3*
x)*log(x)*log(log(3*x)/log(x)) + x*log(3*x)*log(x)*log(log(3*x)/log(x))^2), x)
________________________________________________________________________________________
mupad [B] time = 5.48, size = 100, normalized size = 3.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp((log(x^4/log(x)^2) + x*log(log(3*x)/log(x)) - x^3)/(log(log(3*x)/log(x)) - x^2))*(log(3*x)*(log(x)*(
4*x^2 - x^5) - 2*x^2) + log(x^4/log(x)^2)*(log(x) - log(3*x)*(2*x^2*log(x) + 1)) + log(3*x)*log(log(3*x)/log(x
))*(log(x)*(2*x^3 - 4) + 2) - x*log(3*x)*log(log(3*x)/log(x))^2*log(x)))/(x^5*log(3*x)*log(x) + x*log(3*x)*log
(log(3*x)/log(x))^2*log(x) - 2*x^3*log(3*x)*log(log(3*x)/log(x))*log(x)),x)
[Out]
exp(-x^3/(log(log(3*x)/log(x)) - x^2))*(1/log(x)^2)^(1/(log(log(3*x)/log(x)) - x^2))*(x^4)^(1/(log(log(3*x)/lo
g(x)) - x^2))*(log(3*x)/log(x))^(x/(log(log(3*x)/log(x)) - x^2))
________________________________________________________________________________________
sympy [A] time = 61.87, size = 42, normalized size = 1.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))**2+((-2*x**3+4)*ln(x)-2)*ln(3*x)*ln(ln(3*x)/ln(x))+((2*x**2*ln(x)
+1)*ln(3*x)-ln(x))*ln(x**4/ln(x)**2)+((x**5-4*x**2)*ln(x)+2*x**2)*ln(3*x))*exp((x*ln(ln(3*x)/ln(x))+ln(x**4/ln
(x)**2)-x**3)/(ln(ln(3*x)/ln(x))-x**2))/(x*ln(x)*ln(3*x)*ln(ln(3*x)/ln(x))**2-2*x**3*ln(x)*ln(3*x)*ln(ln(3*x)/
ln(x))+x**5*ln(x)*ln(3*x)),x)
[Out]
exp((-x**3 + x*log((log(x) + log(3))/log(x)) + log(x**4/log(x)**2))/(-x**2 + log((log(x) + log(3))/log(x))))
________________________________________________________________________________________