3.69.75 15 212ee2ee2(62e63x)2ee26+2e6+3xdx

Optimal. Leaf size=22 5(3e63x2)2ee2

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.45, number of steps used = 3, number of rules used = 3, integrand size = 48, number of rulesintegrand size = 0.062, Rules used = {12, 21, 32} 5 4ee2(2(3e6)3x)2ee2

Antiderivative was successfully verified.

[In]

Int[(15*2^(1 - 2*E^E^2)*E^E^2*(6 - 2*E^6 - 3*x)^(2*E^E^2))/(-6 + 2*E^6 + 3*x),x]

[Out]

(5*(2*(3 - E^6) - 3*x)^(2*E^E^2))/4^E^E^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

integral=(15 212ee2ee2)(62e63x)2ee26+2e6+3xdx=((15 212ee2ee2)(62e63x)1+2ee2dx)=5 4ee2(2(3e6)3x)2ee2

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 22, normalized size = 1.00 5(3e63x2)2ee2

Antiderivative was successfully verified.

[In]

Integrate[(15*2^(1 - 2*E^E^2)*E^E^2*(6 - 2*E^6 - 3*x)^(2*E^E^2))/(-6 + 2*E^6 + 3*x),x]

[Out]

5*(3 - E^6 - (3*x)/2)^(2*E^E^2)

________________________________________________________________________________________

fricas [A]  time = 2.78, size = 17, normalized size = 0.77 5(32xe6+3)2e(e2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(30*exp(exp(2))*exp(exp(exp(2))*log(-exp(6)-3/2*x+3))^2/(2*exp(6)+3*x-6),x, algorithm="fricas")

[Out]

5*(-3/2*x - e^6 + 3)^(2*e^(e^2))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 30(32xe6+3)2e(e2)e(e2)3x+2e66dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(30*exp(exp(2))*exp(exp(exp(2))*log(-exp(6)-3/2*x+3))^2/(2*exp(6)+3*x-6),x, algorithm="giac")

[Out]

integrate(30*(-3/2*x - e^6 + 3)^(2*e^(e^2))*e^(e^2)/(3*x + 2*e^6 - 6), x)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 18, normalized size = 0.82




method result size



risch 5(e63x2+3)2ee2 18
gosper 5e2ee2ln(e63x2+3) 20
norman 5e2ee2ln(e63x2+3) 20



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(30*exp(exp(2))*exp(exp(exp(2))*ln(-exp(6)-3/2*x+3))^2/(2*exp(6)+3*x-6),x,method=_RETURNVERBOSE)

[Out]

5*((-exp(6)-3/2*x+3)^exp(exp(2)))^2

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 26, normalized size = 1.18 5(3x2e6+6)2e(e2)22e(e2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(30*exp(exp(2))*exp(exp(exp(2))*log(-exp(6)-3/2*x+3))^2/(2*exp(6)+3*x-6),x, algorithm="maxima")

[Out]

5*(-3*x - 2*e^6 + 6)^(2*e^(e^2))/2^(2*e^(e^2))

________________________________________________________________________________________

mupad [B]  time = 0.32, size = 17, normalized size = 0.77 5(3e63x2)2ee2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((30*exp(exp(2))*(3 - exp(6) - (3*x)/2)^(2*exp(exp(2))))/(3*x + 2*exp(6) - 6),x)

[Out]

5*(3 - exp(6) - (3*x)/2)^(2*exp(exp(2)))

________________________________________________________________________________________

sympy [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: TypeError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(30*exp(exp(2))*exp(exp(exp(2))*ln(-exp(6)-3/2*x+3))**2/(2*exp(6)+3*x-6),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________