3.69.78 4e4+2x24xlog(625)+2log2(625)x22xlog(625)+log2(625)dx

Optimal. Leaf size=20 e3+2x+4e4xlog(625)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 3, number of rules used = 2, integrand size = 38, number of rulesintegrand size = 0.053, Rules used = {27, 683} 2x+4e4xlog(625)

Antiderivative was successfully verified.

[In]

Int[(-4*E^4 + 2*x^2 - 4*x*Log[625] + 2*Log[625]^2)/(x^2 - 2*x*Log[625] + Log[625]^2),x]

[Out]

2*x + (4*E^4)/(x - Log[625])

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 683

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && IGtQ[p, 0] &&  !(EqQ[m, 3] && NeQ[p, 1])

Rubi steps

integral=4e4+2x24xlog(625)+2log2(625)(xlog(625))2dx=(24e4(xlog(625))2)dx=2x+4e4xlog(625)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 17, normalized size = 0.85 2x+4e4xlog(625)

Antiderivative was successfully verified.

[In]

Integrate[(-4*E^4 + 2*x^2 - 4*x*Log[625] + 2*Log[625]^2)/(x^2 - 2*x*Log[625] + Log[625]^2),x]

[Out]

2*x + (4*E^4)/(x - Log[625])

________________________________________________________________________________________

fricas [A]  time = 1.92, size = 23, normalized size = 1.15 2(x24xlog(5)+2e4)x4log(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*log(5)^2-16*x*log(5)-4*exp(4)+2*x^2)/(16*log(5)^2-8*x*log(5)+x^2),x, algorithm="fricas")

[Out]

2*(x^2 - 4*x*log(5) + 2*e^4)/(x - 4*log(5))

________________________________________________________________________________________

giac [A]  time = 0.14, size = 16, normalized size = 0.80 2x+4e4x4log(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*log(5)^2-16*x*log(5)-4*exp(4)+2*x^2)/(16*log(5)^2-8*x*log(5)+x^2),x, algorithm="giac")

[Out]

2*x + 4*e^4/(x - 4*log(5))

________________________________________________________________________________________

maple [A]  time = 0.13, size = 17, normalized size = 0.85




method result size



default 2x+4e4x4ln(5) 17
risch 2xe4ln(5)x4 17
norman 2x2+32ln(5)24e44ln(5)x 28
gosper 2x2+32ln(5)24e44ln(5)x 29
meijerg 2x1x4ln(5)16ln(5)(x4(1x4ln(5))ln(5)+ln(1x4ln(5)))e4x4ln(5)2(1x4ln(5))8ln(5)(x(3x4ln(5)+6)12ln(5)(1x4ln(5))2ln(1x4ln(5))) 113



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((32*ln(5)^2-16*x*ln(5)-4*exp(4)+2*x^2)/(16*ln(5)^2-8*x*ln(5)+x^2),x,method=_RETURNVERBOSE)

[Out]

2*x+4*exp(4)/(x-4*ln(5))

________________________________________________________________________________________

maxima [A]  time = 0.51, size = 16, normalized size = 0.80 2x+4e4x4log(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*log(5)^2-16*x*log(5)-4*exp(4)+2*x^2)/(16*log(5)^2-8*x*log(5)+x^2),x, algorithm="maxima")

[Out]

2*x + 4*e^4/(x - 4*log(5))

________________________________________________________________________________________

mupad [B]  time = 4.17, size = 59, normalized size = 2.95 2x+4atanh(2x8ln(5)24ln(5)+ln(625)4ln(5)ln(625))e44ln(5)+ln(625)4ln(5)ln(625)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(4*exp(4) + 16*x*log(5) - 32*log(5)^2 - 2*x^2)/(16*log(5)^2 - 8*x*log(5) + x^2),x)

[Out]

2*x + (4*atanh((2*x - 8*log(5))/(2*(4*log(5) + log(625))^(1/2)*(4*log(5) - log(625))^(1/2)))*exp(4))/((4*log(5
) + log(625))^(1/2)*(4*log(5) - log(625))^(1/2))

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 14, normalized size = 0.70 2x+4e4x4log(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((32*ln(5)**2-16*x*ln(5)-4*exp(4)+2*x**2)/(16*ln(5)**2-8*x*ln(5)+x**2),x)

[Out]

2*x + 4*exp(4)/(x - 4*log(5))

________________________________________________________________________________________