Optimal. Leaf size=20 \[ e^3+2 x+\frac {4 e^4}{x-\log (625)} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 3, number of rules used = 2, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {27, 683} \begin {gather*} 2 x+\frac {4 e^4}{x-\log (625)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 e^4+2 x^2-4 x \log (625)+2 \log ^2(625)}{(x-\log (625))^2} \, dx\\ &=\int \left (2-\frac {4 e^4}{(x-\log (625))^2}\right ) \, dx\\ &=2 x+\frac {4 e^4}{x-\log (625)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 17, normalized size = 0.85 \begin {gather*} 2 x+\frac {4 e^4}{x-\log (625)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.92, size = 23, normalized size = 1.15 \begin {gather*} \frac {2 \, {\left (x^{2} - 4 \, x \log \relax (5) + 2 \, e^{4}\right )}}{x - 4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 16, normalized size = 0.80 \begin {gather*} 2 \, x + \frac {4 \, e^{4}}{x - 4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 17, normalized size = 0.85
method | result | size |
default | \(2 x +\frac {4 \,{\mathrm e}^{4}}{x -4 \ln \relax (5)}\) | \(17\) |
risch | \(2 x -\frac {{\mathrm e}^{4}}{\ln \relax (5)-\frac {x}{4}}\) | \(17\) |
norman | \(\frac {-2 x^{2}+32 \ln \relax (5)^{2}-4 \,{\mathrm e}^{4}}{4 \ln \relax (5)-x}\) | \(28\) |
gosper | \(\frac {-2 x^{2}+32 \ln \relax (5)^{2}-4 \,{\mathrm e}^{4}}{4 \ln \relax (5)-x}\) | \(29\) |
meijerg | \(\frac {2 x}{1-\frac {x}{4 \ln \relax (5)}}-16 \ln \relax (5) \left (\frac {x}{4 \left (1-\frac {x}{4 \ln \relax (5)}\right ) \ln \relax (5)}+\ln \left (1-\frac {x}{4 \ln \relax (5)}\right )\right )-\frac {{\mathrm e}^{4} x}{4 \ln \relax (5)^{2} \left (1-\frac {x}{4 \ln \relax (5)}\right )}-8 \ln \relax (5) \left (-\frac {x \left (-\frac {3 x}{4 \ln \relax (5)}+6\right )}{12 \ln \relax (5) \left (1-\frac {x}{4 \ln \relax (5)}\right )}-2 \ln \left (1-\frac {x}{4 \ln \relax (5)}\right )\right )\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 16, normalized size = 0.80 \begin {gather*} 2 \, x + \frac {4 \, e^{4}}{x - 4 \, \log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.17, size = 59, normalized size = 2.95 \begin {gather*} 2\,x+\frac {4\,\mathrm {atanh}\left (\frac {2\,x-8\,\ln \relax (5)}{2\,\sqrt {4\,\ln \relax (5)+\ln \left (625\right )}\,\sqrt {4\,\ln \relax (5)-\ln \left (625\right )}}\right )\,{\mathrm {e}}^4}{\sqrt {4\,\ln \relax (5)+\ln \left (625\right )}\,\sqrt {4\,\ln \relax (5)-\ln \left (625\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.70 \begin {gather*} 2 x + \frac {4 e^{4}}{x - 4 \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________