3.69.79 (1+512e2x+ex(192192x)+72x)dx

Optimal. Leaf size=13 x+(16ex+6x)2

________________________________________________________________________________________

Rubi [B]  time = 0.04, antiderivative size = 27, normalized size of antiderivative = 2.08, number of steps used = 4, number of rules used = 2, integrand size = 21, number of rulesintegrand size = 0.095, Rules used = {2194, 2176} 36x2+x+192ex+256e2x192ex(x+1)

Antiderivative was successfully verified.

[In]

Int[1 + 512*E^(2*x) + E^x*(-192 - 192*x) + 72*x,x]

[Out]

192*E^x + 256*E^(2*x) + x + 36*x^2 - 192*E^x*(1 + x)

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=x+36x2+512e2xdx+ex(192192x)dx=256e2x+x+36x2192ex(1+x)+192exdx=192ex+256e2x+x+36x2192ex(1+x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 20, normalized size = 1.54 256e2x+x192exx+36x2

Antiderivative was successfully verified.

[In]

Integrate[1 + 512*E^(2*x) + E^x*(-192 - 192*x) + 72*x,x]

[Out]

256*E^(2*x) + x - 192*E^x*x + 36*x^2

________________________________________________________________________________________

fricas [A]  time = 2.21, size = 18, normalized size = 1.38 36x2192xex+x+256e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(512*exp(x)^2+(-192*x-192)*exp(x)+72*x+1,x, algorithm="fricas")

[Out]

36*x^2 - 192*x*e^x + x + 256*e^(2*x)

________________________________________________________________________________________

giac [A]  time = 0.12, size = 18, normalized size = 1.38 36x2192xex+x+256e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(512*exp(x)^2+(-192*x-192)*exp(x)+72*x+1,x, algorithm="giac")

[Out]

36*x^2 - 192*x*e^x + x + 256*e^(2*x)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 19, normalized size = 1.46




method result size



default x192exx+36x2+256e2x 19
norman x192exx+36x2+256e2x 19
risch x192exx+36x2+256e2x 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(512*exp(x)^2+(-192*x-192)*exp(x)+72*x+1,x,method=_RETURNVERBOSE)

[Out]

x-192*exp(x)*x+36*x^2+256*exp(x)^2

________________________________________________________________________________________

maxima [A]  time = 0.43, size = 18, normalized size = 1.38 36x2192xex+x+256e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(512*exp(x)^2+(-192*x-192)*exp(x)+72*x+1,x, algorithm="maxima")

[Out]

36*x^2 - 192*x*e^x + x + 256*e^(2*x)

________________________________________________________________________________________

mupad [B]  time = 4.10, size = 18, normalized size = 1.38 x+256e2x192xex+36x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(72*x + 512*exp(2*x) - exp(x)*(192*x + 192) + 1,x)

[Out]

x + 256*exp(2*x) - 192*x*exp(x) + 36*x^2

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 19, normalized size = 1.46 36x2192xex+x+256e2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(512*exp(x)**2+(-192*x-192)*exp(x)+72*x+1,x)

[Out]

36*x**2 - 192*x*exp(x) + x + 256*exp(2*x)

________________________________________________________________________________________