3.69.83 167x+31x2+8x316x4+(1631x216x3+48x4)log(x)x2log2(x)dx

Optimal. Leaf size=33 x+(x+1+(12x2)2x2)2xlog(x)

________________________________________________________________________________________

Rubi [F]  time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 167x+31x2+8x316x4+(1631x216x3+48x4)log(x)x2log2(x)dx

Verification is not applicable to the result.

[In]

Int[(-16 - 7*x + 31*x^2 + 8*x^3 - 16*x^4 + (-16 - 31*x^2 - 16*x^3 + 48*x^4)*Log[x])/(x^2*Log[x]^2),x]

[Out]

Defer[Int][(-16 - 7*x + 31*x^2 + 8*x^3 - 16*x^4)/(x^2*Log[x]^2), x] + Defer[Int][(-16 - 31*x^2 - 16*x^3 + 48*x
^4)/(x^2*Log[x]), x]

Rubi steps

integral=(167x+31x2+8x316x4x2log2(x)+1631x216x3+48x4x2log(x))dx=167x+31x2+8x316x4x2log2(x)dx+1631x216x3+48x4x2log(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 28, normalized size = 0.85 16+7x31x28x3+16x4xlog(x)

Antiderivative was successfully verified.

[In]

Integrate[(-16 - 7*x + 31*x^2 + 8*x^3 - 16*x^4 + (-16 - 31*x^2 - 16*x^3 + 48*x^4)*Log[x])/(x^2*Log[x]^2),x]

[Out]

(16 + 7*x - 31*x^2 - 8*x^3 + 16*x^4)/(x*Log[x])

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 28, normalized size = 0.85 16x48x331x2+7x+16xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((48*x^4-16*x^3-31*x^2-16)*log(x)-16*x^4+8*x^3+31*x^2-7*x-16)/x^2/log(x)^2,x, algorithm="fricas")

[Out]

(16*x^4 - 8*x^3 - 31*x^2 + 7*x + 16)/(x*log(x))

________________________________________________________________________________________

giac [A]  time = 0.15, size = 28, normalized size = 0.85 16x48x331x2+7x+16xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((48*x^4-16*x^3-31*x^2-16)*log(x)-16*x^4+8*x^3+31*x^2-7*x-16)/x^2/log(x)^2,x, algorithm="giac")

[Out]

(16*x^4 - 8*x^3 - 31*x^2 + 7*x + 16)/(x*log(x))

________________________________________________________________________________________

maple [A]  time = 0.02, size = 29, normalized size = 0.88




method result size



norman 16x48x331x2+7x+16xln(x) 29
risch 16x48x331x2+7x+16xln(x) 29
default 16x3ln(x)8x2ln(x)31xln(x)+7ln(x)+16xln(x) 42



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((48*x^4-16*x^3-31*x^2-16)*ln(x)-16*x^4+8*x^3+31*x^2-7*x-16)/x^2/ln(x)^2,x,method=_RETURNVERBOSE)

[Out]

(16*x^4-8*x^3-31*x^2+7*x+16)/x/ln(x)

________________________________________________________________________________________

maxima [C]  time = 0.42, size = 63, normalized size = 1.91 7log(x)+48Ei(3log(x))16Ei(2log(x))16Ei(log(x))31Ei(log(x))+31Γ(1,log(x))+16Γ(1,2log(x))48Γ(1,3log(x))+16Γ(1,log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((48*x^4-16*x^3-31*x^2-16)*log(x)-16*x^4+8*x^3+31*x^2-7*x-16)/x^2/log(x)^2,x, algorithm="maxima")

[Out]

7/log(x) + 48*Ei(3*log(x)) - 16*Ei(2*log(x)) - 16*Ei(-log(x)) - 31*Ei(log(x)) + 31*gamma(-1, -log(x)) + 16*gam
ma(-1, -2*log(x)) - 48*gamma(-1, -3*log(x)) + 16*gamma(-1, log(x))

________________________________________________________________________________________

mupad [B]  time = 4.17, size = 28, normalized size = 0.85 16x48x331x2+7x+16xln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(7*x + log(x)*(31*x^2 + 16*x^3 - 48*x^4 + 16) - 31*x^2 - 8*x^3 + 16*x^4 + 16)/(x^2*log(x)^2),x)

[Out]

(7*x - 31*x^2 - 8*x^3 + 16*x^4 + 16)/(x*log(x))

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 24, normalized size = 0.73 16x48x331x2+7x+16xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((48*x**4-16*x**3-31*x**2-16)*ln(x)-16*x**4+8*x**3+31*x**2-7*x-16)/x**2/ln(x)**2,x)

[Out]

(16*x**4 - 8*x**3 - 31*x**2 + 7*x + 16)/(x*log(x))

________________________________________________________________________________________