3.69.84 200x+120x222x312x4+2x5+(60x2+22x3+18x44x5)log(x)+(400x360x2+88x3+60x412x5)log2(x)+(200x180x2+44x3+30x46x5)log3(x)3log3(x)dx

Optimal. Leaf size=28 3(119(5+x)2(2+x)2(x+xlog(x))2)

________________________________________________________________________________________

Rubi [B]  time = 1.94, antiderivative size = 122, normalized size of antiderivative = 4.36, number of steps used = 54, number of rules used = 8, integrand size = 114, number of rulesintegrand size = 0.070, Rules used = {12, 6688, 6742, 1590, 2356, 2306, 2309, 2178} x63log2(x)2x63log(x)+2x5log2(x)+4x5log(x)+11x43log2(x)+22x43log(x)20x3log2(x)40x3log(x)13(5x)2(x+2)2x2100x23log2(x)200x23log(x)

Antiderivative was successfully verified.

[In]

Int[(200*x + 120*x^2 - 22*x^3 - 12*x^4 + 2*x^5 + (-60*x^2 + 22*x^3 + 18*x^4 - 4*x^5)*Log[x] + (-400*x - 360*x^
2 + 88*x^3 + 60*x^4 - 12*x^5)*Log[x]^2 + (-200*x - 180*x^2 + 44*x^3 + 30*x^4 - 6*x^5)*Log[x]^3)/(3*Log[x]^3),x
]

[Out]

-1/3*((5 - x)^2*x^2*(2 + x)^2) - (100*x^2)/(3*Log[x]^2) - (20*x^3)/Log[x]^2 + (11*x^4)/(3*Log[x]^2) + (2*x^5)/
Log[x]^2 - x^6/(3*Log[x]^2) - (200*x^2)/(3*Log[x]) - (40*x^3)/Log[x] + (22*x^4)/(3*Log[x]) + (4*x^5)/Log[x] -
(2*x^6)/(3*Log[x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1590

Int[(Pp_)*(Qq_)^(m_.)*(Rr_)^(n_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x], r = Expon[Rr, x]}, S
imp[(Coeff[Pp, x, p]*x^(p - q - r + 1)*Qq^(m + 1)*Rr^(n + 1))/((p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x
, r]), x] /; NeQ[p + m*q + n*r + 1, 0] && EqQ[(p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x, r]*Pp, Coeff[Pp
, x, p]*x^(p - q - r)*((p - q - r + 1)*Qq*Rr + (m + 1)*x*Rr*D[Qq, x] + (n + 1)*x*Qq*D[Rr, x])]] /; FreeQ[{m, n
}, x] && PolyQ[Pp, x] && PolyQ[Qq, x] && PolyQ[Rr, x] && NeQ[m, -1] && NeQ[n, -1]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=13200x+120x222x312x4+2x5+(60x2+22x3+18x44x5)log(x)+(400x360x2+88x3+60x412x5)log2(x)+(200x180x2+44x3+30x46x5)log3(x)log3(x)dx=132x(10+3xx2)(1+log(x))(10+3xx2+(106x+3x2)log(x)+(106x+3x2)log2(x))log3(x)dx=23x(10+3xx2)(1+log(x))(10+3xx2+(106x+3x2)log(x)+(106x+3x2)log2(x))log3(x)dx=23(((5+x)x(2+x)(106x+3x2))+x(103x+x2)2log3(x)x2(3011x9x2+2x3)log2(x)2(5+x)x(2+x)(106x+3x2)log(x))dx=(23(5+x)x(2+x)(106x+3x2)dx)+23x(103x+x2)2log3(x)dx23x2(3011x9x2+2x3)log2(x)dx43(5+x)x(2+x)(106x+3x2)log(x)dx=13(5x)2x2(2+x)2+23(100xlog3(x)+60x2log3(x)11x3log3(x)6x4log3(x)+x5log3(x))dx23(30x2log2(x)11x3log2(x)9x4log2(x)+2x5log2(x))dx43(100xlog(x)+90x2log(x)22x3log(x)15x4log(x)+3x5log(x))dx=13(5x)2x2(2+x)2+23x5log3(x)dx43x5log2(x)dx4x4log3(x)dx4x5log(x)dx+6x4log2(x)dx223x3log3(x)dx+223x3log2(x)dx20x2log2(x)dx+20x4log(x)dx+883x3log(x)dx+40x2log3(x)dx+2003xlog3(x)dx120x2log(x)dx4003xlog(x)dx=13(5x)2x2(2+x)2100x23log2(x)20x3log2(x)+11x43log2(x)+2x5log2(x)x63log2(x)+20x3log(x)22x43log(x)6x5log(x)+4x63log(x)+2x5log2(x)dx4Subst(e6xxdx,x,log(x))8x5log(x)dx10x4log2(x)dx443x3log2(x)dx+20Subst(e5xxdx,x,log(x))+883x3log(x)dx+883Subst(e4xxdx,x,log(x))+30x4log(x)dx+60x2log2(x)dx60x2log(x)dx+2003xlog2(x)dx120Subst(e3xxdx,x,log(x))4003Subst(e2xxdx,x,log(x))=13(5x)2x2(2+x)24003Ei(2log(x))120Ei(3log(x))+883Ei(4log(x))+20Ei(5log(x))4Ei(6log(x))100x23log2(x)20x3log2(x)+11x43log2(x)+2x5log2(x)x63log2(x)200x23log(x)40x3log(x)+22x43log(x)+4x5log(x)2x63log(x)8Subst(e6xxdx,x,log(x))+12x5log(x)dx+883Subst(e4xxdx,x,log(x))+30Subst(e5xxdx,x,log(x))50x4log(x)dx1763x3log(x)dx60Subst(e3xxdx,x,log(x))+4003xlog(x)dx+180x2log(x)dx=13(5x)2x2(2+x)24003Ei(2log(x))180Ei(3log(x))+1763Ei(4log(x))+50Ei(5log(x))12Ei(6log(x))100x23log2(x)20x3log2(x)+11x43log2(x)+2x5log2(x)x63log2(x)200x23log(x)40x3log(x)+22x43log(x)+4x5log(x)2x63log(x)+12Subst(e6xxdx,x,log(x))50Subst(e5xxdx,x,log(x))1763Subst(e4xxdx,x,log(x))+4003Subst(e2xxdx,x,log(x))+180Subst(e3xxdx,x,log(x))=13(5x)2x2(2+x)2100x23log2(x)20x3log2(x)+11x43log2(x)+2x5log2(x)x63log2(x)200x23log(x)40x3log(x)+22x43log(x)+4x5log(x)2x63log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 27, normalized size = 0.96 x2(103x+x2)2(1+log(x))23log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(200*x + 120*x^2 - 22*x^3 - 12*x^4 + 2*x^5 + (-60*x^2 + 22*x^3 + 18*x^4 - 4*x^5)*Log[x] + (-400*x -
360*x^2 + 88*x^3 + 60*x^4 - 12*x^5)*Log[x]^2 + (-200*x - 180*x^2 + 44*x^3 + 30*x^4 - 6*x^5)*Log[x]^3)/(3*Log[x
]^3),x]

[Out]

-1/3*(x^2*(-10 - 3*x + x^2)^2*(1 + Log[x])^2)/Log[x]^2

________________________________________________________________________________________

fricas [B]  time = 1.00, size = 87, normalized size = 3.11 x66x511x4+60x3+(x66x511x4+60x3+100x2)log(x)2+100x2+2(x66x511x4+60x3+100x2)log(x)3log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*log(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*log(x)^2+(-
4*x^5+18*x^4+22*x^3-60*x^2)*log(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/log(x)^3,x, algorithm="fricas")

[Out]

-1/3*(x^6 - 6*x^5 - 11*x^4 + 60*x^3 + (x^6 - 6*x^5 - 11*x^4 + 60*x^3 + 100*x^2)*log(x)^2 + 100*x^2 + 2*(x^6 -
6*x^5 - 11*x^4 + 60*x^3 + 100*x^2)*log(x))/log(x)^2

________________________________________________________________________________________

giac [B]  time = 0.17, size = 116, normalized size = 4.14 13x6+2x52x63log(x)+113x4x63log(x)2+4x5log(x)20x3+2x5log(x)2+22x43log(x)1003x2+11x43log(x)240x3log(x)20x3log(x)2200x23log(x)100x23log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*log(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*log(x)^2+(-
4*x^5+18*x^4+22*x^3-60*x^2)*log(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/log(x)^3,x, algorithm="giac")

[Out]

-1/3*x^6 + 2*x^5 - 2/3*x^6/log(x) + 11/3*x^4 - 1/3*x^6/log(x)^2 + 4*x^5/log(x) - 20*x^3 + 2*x^5/log(x)^2 + 22/
3*x^4/log(x) - 100/3*x^2 + 11/3*x^4/log(x)^2 - 40*x^3/log(x) - 20*x^3/log(x)^2 - 200/3*x^2/log(x) - 100/3*x^2/
log(x)^2

________________________________________________________________________________________

maple [B]  time = 0.03, size = 84, normalized size = 3.00




method result size



risch x63+2x5+11x4320x3100x23x2(2x4ln(x)+x412x3ln(x)6x322x2ln(x)11x2+120xln(x)+60x+200ln(x)+100)3ln(x)2 84
norman 100x2320x3+11x43+2x5x63200x2ln(x)3100x2ln(x)2340x3ln(x)20x3ln(x)2+22x4ln(x)3+11x4ln(x)23+4x5ln(x)+2x5ln(x)22x6ln(x)3x6ln(x)23ln(x)2 112
default 200x23ln(x)x63+2x5+11x4320x3100x23100x23ln(x)2+22x43ln(x)40x3ln(x)+11x43ln(x)220x3ln(x)2+4x5ln(x)+2x5ln(x)22x63ln(x)x63ln(x)2 117



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*ln(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*ln(x)^2+(-4*x^5+18
*x^4+22*x^3-60*x^2)*ln(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/ln(x)^3,x,method=_RETURNVERBOSE)

[Out]

-1/3*x^6+2*x^5+11/3*x^4-20*x^3-100/3*x^2-1/3*x^2*(2*x^4*ln(x)+x^4-12*x^3*ln(x)-6*x^3-22*x^2*ln(x)-11*x^2+120*x
*ln(x)+60*x+200*ln(x)+100)/ln(x)^2

________________________________________________________________________________________

maxima [C]  time = 0.43, size = 133, normalized size = 4.75 13x6+2x5+113x420x31003x24Ei(6log(x))+20Ei(5log(x))+883Ei(4log(x))120Ei(3log(x))4003Ei(2log(x))60Γ(1,3log(x))+883Γ(1,4log(x))+30Γ(1,5log(x))8Γ(1,6log(x))8003Γ(2,2log(x))360Γ(2,3log(x))+3523Γ(2,4log(x))+100Γ(2,5log(x))24Γ(2,6log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*log(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*log(x)^2+(-
4*x^5+18*x^4+22*x^3-60*x^2)*log(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/log(x)^3,x, algorithm="maxima")

[Out]

-1/3*x^6 + 2*x^5 + 11/3*x^4 - 20*x^3 - 100/3*x^2 - 4*Ei(6*log(x)) + 20*Ei(5*log(x)) + 88/3*Ei(4*log(x)) - 120*
Ei(3*log(x)) - 400/3*Ei(2*log(x)) - 60*gamma(-1, -3*log(x)) + 88/3*gamma(-1, -4*log(x)) + 30*gamma(-1, -5*log(
x)) - 8*gamma(-1, -6*log(x)) - 800/3*gamma(-2, -2*log(x)) - 360*gamma(-2, -3*log(x)) + 352/3*gamma(-2, -4*log(
x)) + 100*gamma(-2, -5*log(x)) - 24*gamma(-2, -6*log(x))

________________________________________________________________________________________

mupad [B]  time = 4.21, size = 27, normalized size = 0.96 x2(ln(x)+1)2(x2+3x+10)23ln(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((log(x)*(60*x^2 - 22*x^3 - 18*x^4 + 4*x^5))/3 - (200*x)/3 + (log(x)^3*(200*x + 180*x^2 - 44*x^3 - 30*x^4
 + 6*x^5))/3 + (log(x)^2*(400*x + 360*x^2 - 88*x^3 - 60*x^4 + 12*x^5))/3 - 40*x^2 + (22*x^3)/3 + 4*x^4 - (2*x^
5)/3)/log(x)^3,x)

[Out]

-(x^2*(log(x) + 1)^2*(3*x - x^2 + 10)^2)/(3*log(x)^2)

________________________________________________________________________________________

sympy [B]  time = 0.19, size = 87, normalized size = 3.11 x63+2x5+11x4320x3100x23+x6+6x5+11x460x3100x2+(2x6+12x5+22x4120x3200x2)log(x)3log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*((-6*x**5+30*x**4+44*x**3-180*x**2-200*x)*ln(x)**3+(-12*x**5+60*x**4+88*x**3-360*x**2-400*x)*ln(
x)**2+(-4*x**5+18*x**4+22*x**3-60*x**2)*ln(x)+2*x**5-12*x**4-22*x**3+120*x**2+200*x)/ln(x)**3,x)

[Out]

-x**6/3 + 2*x**5 + 11*x**4/3 - 20*x**3 - 100*x**2/3 + (-x**6 + 6*x**5 + 11*x**4 - 60*x**3 - 100*x**2 + (-2*x**
6 + 12*x**5 + 22*x**4 - 120*x**3 - 200*x**2)*log(x))/(3*log(x)**2)

________________________________________________________________________________________