3.69.84
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [B] time = 1.94, antiderivative size = 122, normalized size of antiderivative = 4.36,
number of steps used = 54, number of rules used = 8, integrand size = 114, = 0.070, Rules used
= {12, 6688, 6742, 1590, 2356, 2306, 2309, 2178}
Antiderivative was successfully verified.
[In]
Int[(200*x + 120*x^2 - 22*x^3 - 12*x^4 + 2*x^5 + (-60*x^2 + 22*x^3 + 18*x^4 - 4*x^5)*Log[x] + (-400*x - 360*x^
2 + 88*x^3 + 60*x^4 - 12*x^5)*Log[x]^2 + (-200*x - 180*x^2 + 44*x^3 + 30*x^4 - 6*x^5)*Log[x]^3)/(3*Log[x]^3),x
]
[Out]
-1/3*((5 - x)^2*x^2*(2 + x)^2) - (100*x^2)/(3*Log[x]^2) - (20*x^3)/Log[x]^2 + (11*x^4)/(3*Log[x]^2) + (2*x^5)/
Log[x]^2 - x^6/(3*Log[x]^2) - (200*x^2)/(3*Log[x]) - (40*x^3)/Log[x] + (22*x^4)/(3*Log[x]) + (4*x^5)/Log[x] -
(2*x^6)/(3*Log[x])
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 1590
Int[(Pp_)*(Qq_)^(m_.)*(Rr_)^(n_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x], r = Expon[Rr, x]}, S
imp[(Coeff[Pp, x, p]*x^(p - q - r + 1)*Qq^(m + 1)*Rr^(n + 1))/((p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x
, r]), x] /; NeQ[p + m*q + n*r + 1, 0] && EqQ[(p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x, r]*Pp, Coeff[Pp
, x, p]*x^(p - q - r)*((p - q - r + 1)*Qq*Rr + (m + 1)*x*Rr*D[Qq, x] + (n + 1)*x*Qq*D[Rr, x])]] /; FreeQ[{m, n
}, x] && PolyQ[Pp, x] && PolyQ[Qq, x] && PolyQ[Rr, x] && NeQ[m, -1] && NeQ[n, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2356
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 27, normalized size = 0.96
Antiderivative was successfully verified.
[In]
Integrate[(200*x + 120*x^2 - 22*x^3 - 12*x^4 + 2*x^5 + (-60*x^2 + 22*x^3 + 18*x^4 - 4*x^5)*Log[x] + (-400*x -
360*x^2 + 88*x^3 + 60*x^4 - 12*x^5)*Log[x]^2 + (-200*x - 180*x^2 + 44*x^3 + 30*x^4 - 6*x^5)*Log[x]^3)/(3*Log[x
]^3),x]
[Out]
-1/3*(x^2*(-10 - 3*x + x^2)^2*(1 + Log[x])^2)/Log[x]^2
________________________________________________________________________________________
fricas [B] time = 1.00, size = 87, normalized size = 3.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*log(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*log(x)^2+(-
4*x^5+18*x^4+22*x^3-60*x^2)*log(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/log(x)^3,x, algorithm="fricas")
[Out]
-1/3*(x^6 - 6*x^5 - 11*x^4 + 60*x^3 + (x^6 - 6*x^5 - 11*x^4 + 60*x^3 + 100*x^2)*log(x)^2 + 100*x^2 + 2*(x^6 -
6*x^5 - 11*x^4 + 60*x^3 + 100*x^2)*log(x))/log(x)^2
________________________________________________________________________________________
giac [B] time = 0.17, size = 116, normalized size = 4.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*log(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*log(x)^2+(-
4*x^5+18*x^4+22*x^3-60*x^2)*log(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/log(x)^3,x, algorithm="giac")
[Out]
-1/3*x^6 + 2*x^5 - 2/3*x^6/log(x) + 11/3*x^4 - 1/3*x^6/log(x)^2 + 4*x^5/log(x) - 20*x^3 + 2*x^5/log(x)^2 + 22/
3*x^4/log(x) - 100/3*x^2 + 11/3*x^4/log(x)^2 - 40*x^3/log(x) - 20*x^3/log(x)^2 - 200/3*x^2/log(x) - 100/3*x^2/
log(x)^2
________________________________________________________________________________________
maple [B] time = 0.03, size = 84, normalized size = 3.00
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*ln(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*ln(x)^2+(-4*x^5+18
*x^4+22*x^3-60*x^2)*ln(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/ln(x)^3,x,method=_RETURNVERBOSE)
[Out]
-1/3*x^6+2*x^5+11/3*x^4-20*x^3-100/3*x^2-1/3*x^2*(2*x^4*ln(x)+x^4-12*x^3*ln(x)-6*x^3-22*x^2*ln(x)-11*x^2+120*x
*ln(x)+60*x+200*ln(x)+100)/ln(x)^2
________________________________________________________________________________________
maxima [C] time = 0.43, size = 133, normalized size = 4.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/3*((-6*x^5+30*x^4+44*x^3-180*x^2-200*x)*log(x)^3+(-12*x^5+60*x^4+88*x^3-360*x^2-400*x)*log(x)^2+(-
4*x^5+18*x^4+22*x^3-60*x^2)*log(x)+2*x^5-12*x^4-22*x^3+120*x^2+200*x)/log(x)^3,x, algorithm="maxima")
[Out]
-1/3*x^6 + 2*x^5 + 11/3*x^4 - 20*x^3 - 100/3*x^2 - 4*Ei(6*log(x)) + 20*Ei(5*log(x)) + 88/3*Ei(4*log(x)) - 120*
Ei(3*log(x)) - 400/3*Ei(2*log(x)) - 60*gamma(-1, -3*log(x)) + 88/3*gamma(-1, -4*log(x)) + 30*gamma(-1, -5*log(
x)) - 8*gamma(-1, -6*log(x)) - 800/3*gamma(-2, -2*log(x)) - 360*gamma(-2, -3*log(x)) + 352/3*gamma(-2, -4*log(
x)) + 100*gamma(-2, -5*log(x)) - 24*gamma(-2, -6*log(x))
________________________________________________________________________________________
mupad [B] time = 4.21, size = 27, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-((log(x)*(60*x^2 - 22*x^3 - 18*x^4 + 4*x^5))/3 - (200*x)/3 + (log(x)^3*(200*x + 180*x^2 - 44*x^3 - 30*x^4
+ 6*x^5))/3 + (log(x)^2*(400*x + 360*x^2 - 88*x^3 - 60*x^4 + 12*x^5))/3 - 40*x^2 + (22*x^3)/3 + 4*x^4 - (2*x^
5)/3)/log(x)^3,x)
[Out]
-(x^2*(log(x) + 1)^2*(3*x - x^2 + 10)^2)/(3*log(x)^2)
________________________________________________________________________________________
sympy [B] time = 0.19, size = 87, normalized size = 3.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/3*((-6*x**5+30*x**4+44*x**3-180*x**2-200*x)*ln(x)**3+(-12*x**5+60*x**4+88*x**3-360*x**2-400*x)*ln(
x)**2+(-4*x**5+18*x**4+22*x**3-60*x**2)*ln(x)+2*x**5-12*x**4-22*x**3+120*x**2+200*x)/ln(x)**3,x)
[Out]
-x**6/3 + 2*x**5 + 11*x**4/3 - 20*x**3 - 100*x**2/3 + (-x**6 + 6*x**5 + 11*x**4 - 60*x**3 - 100*x**2 + (-2*x**
6 + 12*x**5 + 22*x**4 - 120*x**3 - 200*x**2)*log(x))/(3*log(x)**2)
________________________________________________________________________________________