3.69.85 x2584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(2100200x25x2+(200x+50x2)log(x)+e42x+2x2x2(25+(5050x+100x2)log(x))+e2x+x2x(20050x+(200100x+350x2+100x3)log(x)))7056x1344x2104x3+16x4+x5+e84x+4x2x5+e63x+3x2x3(16x+4x2)+e42x+2x2x2(104x+48x2+6x3)+e2x+x2x(1344x208x2+48x3+4x4)dx

Optimal. Leaf size=27 x14125(4+x+e2x+x2x)2

________________________________________________________________________________________

Rubi [F]  time = 66.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} x2584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(2100200x25x2+(200x+50x2)log(x)+e42x+2x2x2(25+(5050x+100x2)log(x))+e2x+x2x(20050x+(200100x+350x2+100x3)log(x)))7056x1344x2104x3+16x4+x5+e84x+4x2x5+e63x+3x2x3(16x+4x2)+e42x+2x2x2(104x+48x2+6x3)+e2x+x2x(1344x208x2+48x3+4x4)dx

Verification is not applicable to the result.

[In]

Int[(2100 - 200*x - 25*x^2 + (200*x + 50*x^2)*Log[x] + E^(-4 - 2*x + 2*x^2)*x^2*(-25 + (50 - 50*x + 100*x^2)*L
og[x]) + E^(-2 - x + x^2)*x*(-200 - 50*x + (200 - 100*x + 350*x^2 + 100*x^3)*Log[x]))/(x^(25/(-84 + 8*x + x^2
+ E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x)))*(7056*x - 1344*x^2 - 104*x^3 + 16*x^4 + x^5 + E^(-
8 - 4*x + 4*x^2)*x^5 + E^(-6 - 3*x + 3*x^2)*x^3*(16*x + 4*x^2) + E^(-4 - 2*x + 2*x^2)*x^2*(-104*x + 48*x^2 + 6
*x^3) + E^(-2 - x + x^2)*x*(-1344*x - 208*x^2 + 48*x^3 + 4*x^4))),x]

[Out]

(-15*Log[x]*Defer[Int][E^(4 + 2*x)/(x^(25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8
+ 2*x)))*(-6*E^(2 + x) + E^x^2*x + E^(2 + x)*x)^2), x])/2 + (15*Log[x]*Defer[Int][(E^(4 + 2*x)*x^(-1 - 25/(-84
 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(-6*E^(2 + x) + E^x^2*x + E^(2 + x)*
x)^2, x])/2 + (65*Log[x]*Defer[Int][(E^(4 + 2*x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2
 - x + x^2)*x*(8 + 2*x))))/(-6*E^(2 + x) + E^x^2*x + E^(2 + x)*x)^2, x])/4 - (5*Log[x]*Defer[Int][(E^(4 + 2*x)
*x^(2 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(-6*E^(2 + x) + E^x^2
*x + E^(2 + x)*x)^2, x])/2 - (5*Log[x]*Defer[Int][E^(2 + x)/(x^(25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2
 + E^(-2 - x + x^2)*x*(8 + 2*x)))*(-6*E^(2 + x) + E^x^2*x + E^(2 + x)*x)), x])/4 - (5*Defer[Int][(E^(2 + x)*x^
(-1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(-6*E^(2 + x) + E^x^2*x
 + E^(2 + x)*x), x])/4 + (5*Log[x]*Defer[Int][(E^(2 + x)*x^(-1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^
2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(-6*E^(2 + x) + E^x^2*x + E^(2 + x)*x), x])/4 + (5*Log[x]*Defer[Int][(E^(2
 + x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(-6*E^(2 + x) +
E^x^2*x + E^(2 + x)*x), x])/2 - (35*Log[x]*Defer[Int][E^(4 + 2*x)/(x^(25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^
2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x)))*(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x)^2), x])/2 + (35*Log[x]*Defer[In
t][(E^(4 + 2*x)*x^(-1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(14*E
^(2 + x) + E^x^2*x + E^(2 + x)*x)^2, x])/2 + (135*Log[x]*Defer[Int][(E^(4 + 2*x)*x^(1 - 25/(-84 + 8*x + x^2 +
E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x)^2, x])/4 + (
5*Log[x]*Defer[Int][(E^(4 + 2*x)*x^(2 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8
 + 2*x))))/(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x)^2, x])/2 + (5*Log[x]*Defer[Int][E^(2 + x)/(x^(25/(-84 + 8*x
+ x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x)))*(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x)), x])
/4 + (5*Defer[Int][(E^(2 + x)*x^(-1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 +
 2*x))))/(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x), x])/4 - (5*Log[x]*Defer[Int][(E^(2 + x)*x^(-1 - 25/(-84 + 8*x
 + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x))))/(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x), x]
)/4 - (5*Log[x]*Defer[Int][(E^(2 + x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)
*x*(8 + 2*x))))/(14*E^(2 + x) + E^x^2*x + E^(2 + x)*x), x])/2 + (15*Defer[Int][Defer[Int][E^(4 + 2*x)/(x^(25/(
-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x)))*(E^(2 + x)*(-6 + x) + E^x^2*x)^2),
 x]/x, x])/2 - (15*Defer[Int][Defer[Int][(E^(4 + 2*x)*x^(-1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 +
 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^(2 + x)*(-6 + x) + E^x^2*x)^2, x]/x, x])/2 - (65*Defer[Int][Defer[Int][(E^
(4 + 2*x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^(2 + x)*(
-6 + x) + E^x^2*x)^2, x]/x, x])/4 + (5*Defer[Int][Defer[Int][(E^(4 + 2*x)*x^(2 - 25/(-84 + 8*x + x^2 + E^(-4 -
 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^(2 + x)*(-6 + x) + E^x^2*x)^2, x]/x, x])/2 + (5*Defer[I
nt][Defer[Int][E^(2 + x)/(x^(25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x)))*(
E^(2 + x)*(-6 + x) + E^x^2*x)), x]/x, x])/4 - (5*Defer[Int][Defer[Int][(E^(2 + x)*x^(-1 - 25/(-84 + 8*x + x^2
+ E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^(2 + x)*(-6 + x) + E^x^2*x), x]/x, x])/4 - (5*
Defer[Int][Defer[Int][(E^(2 + x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*
(4 + x))))/(E^(2 + x)*(-6 + x) + E^x^2*x), x]/x, x])/2 + (35*Defer[Int][Defer[Int][E^(4 + 2*x)/(x^(25/(-84 + 8
*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x)))*(E^x^2*x + E^(2 + x)*(14 + x))^2), x]/x,
x])/2 - (35*Defer[Int][Defer[Int][(E^(4 + 2*x)*x^(-1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-
2 - x + x^2)*x*(4 + x))))/(E^x^2*x + E^(2 + x)*(14 + x))^2, x]/x, x])/2 - (135*Defer[Int][Defer[Int][(E^(4 + 2
*x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^x^2*x + E^(2 +
x)*(14 + x))^2, x]/x, x])/4 - (5*Defer[Int][Defer[Int][(E^(4 + 2*x)*x^(2 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x +
 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^x^2*x + E^(2 + x)*(14 + x))^2, x]/x, x])/2 - (5*Defer[Int][De
fer[Int][E^(2 + x)/(x^(25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x)))*(E^x^2*
x + E^(2 + x)*(14 + x))), x]/x, x])/4 + (5*Defer[Int][Defer[Int][(E^(2 + x)*x^(-1 - 25/(-84 + 8*x + x^2 + E^(-
4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x))))/(E^x^2*x + E^(2 + x)*(14 + x)), x]/x, x])/4 + (5*Defer[
Int][Defer[Int][(E^(2 + x)*x^(1 - 25/(-84 + 8*x + x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + 2*E^(-2 - x + x^2)*x*(4 + x
))))/(E^x^2*x + E^(2 + x)*(14 + x)), x]/x, x])/2

Rubi steps

integral=e8+4xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(2100200x25x2+(200x+50x2)log(x)+e42x+2x2x2(25+(5050x+100x2)log(x))+e2x+x2x(20050x+(200100x+350x2+100x3)log(x)))(84e4+2x8e4+2xx8e2+x+x2xe2x2x2e4+2xx22e2+x+x2x2)2dx=(5e4+2xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(6+6x13x2+2x3)log(x)4(6e2+x+ex2x+e2+xx)2+5e4+2xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(1414x+27x2+2x3)log(x)4(14e2+x+ex2x+e2+xx)2+5e2+xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(1+log(x)xlog(x)+2x2log(x))4(6e2+x+ex2x+e2+xx)5e2+xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(1+log(x)xlog(x)+2x2log(x))4(14e2+x+ex2x+e2+xx))dx=(54e4+2xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(6+6x13x2+2x3)log(x)(6e2+x+ex2x+e2+xx)2dx)+54e4+2xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(1414x+27x2+2x3)log(x)(14e2+x+ex2x+e2+xx)2dx+54e2+xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(1+log(x)xlog(x)+2x2log(x))6e2+x+ex2x+e2+xxdx54e2+xx12584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(1+log(x)xlog(x)+2x2log(x))14e2+x+ex2x+e2+xxdx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [F]  time = 2.19, size = 0, normalized size = 0.00 x2584+8x+x2+e42x+2x2x2+e2x+x2x(8+2x)(2100200x25x2+(200x+50x2)log(x)+e42x+2x2x2(25+(5050x+100x2)log(x))+e2x+x2x(20050x+(200100x+350x2+100x3)log(x)))7056x1344x2104x3+16x4+x5+e84x+4x2x5+e63x+3x2x3(16x+4x2)+e42x+2x2x2(104x+48x2+6x3)+e2x+x2x(1344x208x2+48x3+4x4)dx

Verification is not applicable to the result.

[In]

Integrate[(2100 - 200*x - 25*x^2 + (200*x + 50*x^2)*Log[x] + E^(-4 - 2*x + 2*x^2)*x^2*(-25 + (50 - 50*x + 100*
x^2)*Log[x]) + E^(-2 - x + x^2)*x*(-200 - 50*x + (200 - 100*x + 350*x^2 + 100*x^3)*Log[x]))/(x^(25/(-84 + 8*x
+ x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x)))*(7056*x - 1344*x^2 - 104*x^3 + 16*x^4 + x^5
+ E^(-8 - 4*x + 4*x^2)*x^5 + E^(-6 - 3*x + 3*x^2)*x^3*(16*x + 4*x^2) + E^(-4 - 2*x + 2*x^2)*x^2*(-104*x + 48*x
^2 + 6*x^3) + E^(-2 - x + x^2)*x*(-1344*x - 208*x^2 + 48*x^3 + 4*x^4))),x]

[Out]

Integrate[(2100 - 200*x - 25*x^2 + (200*x + 50*x^2)*Log[x] + E^(-4 - 2*x + 2*x^2)*x^2*(-25 + (50 - 50*x + 100*
x^2)*Log[x]) + E^(-2 - x + x^2)*x*(-200 - 50*x + (200 - 100*x + 350*x^2 + 100*x^3)*Log[x]))/(x^(25/(-84 + 8*x
+ x^2 + E^(-4 - 2*x + 2*x^2)*x^2 + E^(-2 - x + x^2)*x*(8 + 2*x)))*(7056*x - 1344*x^2 - 104*x^3 + 16*x^4 + x^5
+ E^(-8 - 4*x + 4*x^2)*x^5 + E^(-6 - 3*x + 3*x^2)*x^3*(16*x + 4*x^2) + E^(-4 - 2*x + 2*x^2)*x^2*(-104*x + 48*x
^2 + 6*x^3) + E^(-2 - x + x^2)*x*(-1344*x - 208*x^2 + 48*x^3 + 4*x^4))), x]

________________________________________________________________________________________

fricas [A]  time = 3.18, size = 47, normalized size = 1.74 1x25x2+2(x+4)e(x2x+log(x)2)+8x+e(2x22x+2log(x)4)84

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x^2-50*x+50)*log(x)-25)*exp(log(x)+x^2-x-2)^2+((100*x^3+350*x^2-100*x+200)*log(x)-50*x-200)*e
xp(log(x)+x^2-x-2)+(50*x^2+200*x)*log(x)-25*x^2-200*x+2100)*exp(-25*log(x)/(exp(log(x)+x^2-x-2)^2+(2*x+8)*exp(
log(x)+x^2-x-2)+x^2+8*x-84))/(x*exp(log(x)+x^2-x-2)^4+(4*x^2+16*x)*exp(log(x)+x^2-x-2)^3+(6*x^3+48*x^2-104*x)*
exp(log(x)+x^2-x-2)^2+(4*x^4+48*x^3-208*x^2-1344*x)*exp(log(x)+x^2-x-2)+x^5+16*x^4-104*x^3-1344*x^2+7056*x),x,
 algorithm="fricas")

[Out]

1/(x^(25/(x^2 + 2*(x + 4)*e^(x^2 - x + log(x) - 2) + 8*x + e^(2*x^2 - 2*x + 2*log(x) - 4) - 84)))

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x^2-50*x+50)*log(x)-25)*exp(log(x)+x^2-x-2)^2+((100*x^3+350*x^2-100*x+200)*log(x)-50*x-200)*e
xp(log(x)+x^2-x-2)+(50*x^2+200*x)*log(x)-25*x^2-200*x+2100)*exp(-25*log(x)/(exp(log(x)+x^2-x-2)^2+(2*x+8)*exp(
log(x)+x^2-x-2)+x^2+8*x-84))/(x*exp(log(x)+x^2-x-2)^4+(4*x^2+16*x)*exp(log(x)+x^2-x-2)^3+(6*x^3+48*x^2-104*x)*
exp(log(x)+x^2-x-2)^2+(4*x^4+48*x^3-208*x^2-1344*x)*exp(log(x)+x^2-x-2)+x^5+16*x^4-104*x^3-1344*x^2+7056*x),x,
 algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.06, size = 52, normalized size = 1.93




method result size



risch x25x2e2(x+1)(x2)+2x2e(x+1)(x2)+8xe(x+1)(x2)+x2+8x84 52



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((100*x^2-50*x+50)*ln(x)-25)*exp(ln(x)+x^2-x-2)^2+((100*x^3+350*x^2-100*x+200)*ln(x)-50*x-200)*exp(ln(x)+
x^2-x-2)+(50*x^2+200*x)*ln(x)-25*x^2-200*x+2100)*exp(-25*ln(x)/(exp(ln(x)+x^2-x-2)^2+(2*x+8)*exp(ln(x)+x^2-x-2
)+x^2+8*x-84))/(x*exp(ln(x)+x^2-x-2)^4+(4*x^2+16*x)*exp(ln(x)+x^2-x-2)^3+(6*x^3+48*x^2-104*x)*exp(ln(x)+x^2-x-
2)^2+(4*x^4+48*x^3-208*x^2-1344*x)*exp(ln(x)+x^2-x-2)+x^5+16*x^4-104*x^3-1344*x^2+7056*x),x,method=_RETURNVERB
OSE)

[Out]

x^(-25/(x^2*exp(2*(x+1)*(x-2))+2*x^2*exp((x+1)*(x-2))+8*x*exp((x+1)*(x-2))+x^2+8*x-84))

________________________________________________________________________________________

maxima [B]  time = 0.81, size = 60, normalized size = 2.22 e(5e(x+2)log(x)4(xe(x2)+(xe2+14e2)ex)5e(x+2)log(x)4(xe(x2)+(xe26e2)ex))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x^2-50*x+50)*log(x)-25)*exp(log(x)+x^2-x-2)^2+((100*x^3+350*x^2-100*x+200)*log(x)-50*x-200)*e
xp(log(x)+x^2-x-2)+(50*x^2+200*x)*log(x)-25*x^2-200*x+2100)*exp(-25*log(x)/(exp(log(x)+x^2-x-2)^2+(2*x+8)*exp(
log(x)+x^2-x-2)+x^2+8*x-84))/(x*exp(log(x)+x^2-x-2)^4+(4*x^2+16*x)*exp(log(x)+x^2-x-2)^3+(6*x^3+48*x^2-104*x)*
exp(log(x)+x^2-x-2)^2+(4*x^4+48*x^3-208*x^2-1344*x)*exp(log(x)+x^2-x-2)+x^5+16*x^4-104*x^3-1344*x^2+7056*x),x,
 algorithm="maxima")

[Out]

e^(5/4*e^(x + 2)*log(x)/(x*e^(x^2) + (x*e^2 + 14*e^2)*e^x) - 5/4*e^(x + 2)*log(x)/(x*e^(x^2) + (x*e^2 - 6*e^2)
*e^x))

________________________________________________________________________________________

mupad [B]  time = 4.81, size = 60, normalized size = 2.22 1x258x+x2+2x2exex2e2+x2e2xe4e2x2+8xexex2e284

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-(25*log(x))/(8*x + exp(2*log(x) - 2*x + 2*x^2 - 4) + x^2 + exp(log(x) - x + x^2 - 2)*(2*x + 8) - 84
))*(200*x - exp(2*log(x) - 2*x + 2*x^2 - 4)*(log(x)*(100*x^2 - 50*x + 50) - 25) - log(x)*(200*x + 50*x^2) + ex
p(log(x) - x + x^2 - 2)*(50*x - log(x)*(350*x^2 - 100*x + 100*x^3 + 200) + 200) + 25*x^2 - 2100))/(7056*x + ex
p(2*log(x) - 2*x + 2*x^2 - 4)*(48*x^2 - 104*x + 6*x^3) - exp(log(x) - x + x^2 - 2)*(1344*x + 208*x^2 - 48*x^3
- 4*x^4) - 1344*x^2 - 104*x^3 + 16*x^4 + x^5 + exp(3*log(x) - 3*x + 3*x^2 - 6)*(16*x + 4*x^2) + x*exp(4*log(x)
 - 4*x + 4*x^2 - 8)),x)

[Out]

1/x^(25/(8*x + x^2 + 2*x^2*exp(-x)*exp(x^2)*exp(-2) + x^2*exp(-2*x)*exp(-4)*exp(2*x^2) + 8*x*exp(-x)*exp(x^2)*
exp(-2) - 84))

________________________________________________________________________________________

sympy [A]  time = 7.57, size = 46, normalized size = 1.70 e25log(x)x2e2x22x4+x2+x(2x+8)ex2x2+8x84

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((100*x**2-50*x+50)*ln(x)-25)*exp(ln(x)+x**2-x-2)**2+((100*x**3+350*x**2-100*x+200)*ln(x)-50*x-200)
*exp(ln(x)+x**2-x-2)+(50*x**2+200*x)*ln(x)-25*x**2-200*x+2100)*exp(-25*ln(x)/(exp(ln(x)+x**2-x-2)**2+(2*x+8)*e
xp(ln(x)+x**2-x-2)+x**2+8*x-84))/(x*exp(ln(x)+x**2-x-2)**4+(4*x**2+16*x)*exp(ln(x)+x**2-x-2)**3+(6*x**3+48*x**
2-104*x)*exp(ln(x)+x**2-x-2)**2+(4*x**4+48*x**3-208*x**2-1344*x)*exp(ln(x)+x**2-x-2)+x**5+16*x**4-104*x**3-134
4*x**2+7056*x),x)

[Out]

exp(-25*log(x)/(x**2*exp(2*x**2 - 2*x - 4) + x**2 + x*(2*x + 8)*exp(x**2 - x - 2) + 8*x - 84))

________________________________________________________________________________________