Optimal. Leaf size=26 \[ 5 x (5+2 x) \left (x^2+\log \left (-4+\frac {e^3}{1-x}\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.92, antiderivative size = 101, normalized size of antiderivative = 3.88, number of steps used = 9, number of rules used = 6, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {6688, 12, 6742, 1612, 2492, 72} \begin {gather*} 10 x^4+25 x^3+\frac {5}{8} \left (56-18 e^3+e^6\right ) \log \left (-4 x-e^3+4\right )-\frac {5}{8} \left (9-e^3\right )^2 \log \left (-4 x-e^3+4\right )+\frac {5}{8} (4 x+5)^2 \log \left (-\frac {-4 x-e^3+4}{1-x}\right )+\frac {125}{8} \log (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 72
Rule 1612
Rule 2492
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (-\frac {x \left (4 (-1+x)^2 x (15+8 x)+e^3 \left (-5-17 x+7 x^2+8 x^3\right )\right )}{-4+e^3+4 x}-\left (-5+x+4 x^2\right ) \log \left (-\frac {-4+e^3+4 x}{-1+x}\right )\right )}{1-x} \, dx\\ &=5 \int \frac {-\frac {x \left (4 (-1+x)^2 x (15+8 x)+e^3 \left (-5-17 x+7 x^2+8 x^3\right )\right )}{-4+e^3+4 x}-\left (-5+x+4 x^2\right ) \log \left (-\frac {-4+e^3+4 x}{-1+x}\right )}{1-x} \, dx\\ &=5 \int \left (\frac {x \left (-5 e^3+\left (60-17 e^3\right ) x-\left (88-7 e^3\right ) x^2-4 \left (1-2 e^3\right ) x^3+32 x^4\right )}{\left (4-e^3-4 x\right ) (1-x)}+(5+4 x) \log \left (-\frac {-4+e^3+4 x}{-1+x}\right )\right ) \, dx\\ &=5 \int \frac {x \left (-5 e^3+\left (60-17 e^3\right ) x-\left (88-7 e^3\right ) x^2-4 \left (1-2 e^3\right ) x^3+32 x^4\right )}{\left (4-e^3-4 x\right ) (1-x)} \, dx+5 \int (5+4 x) \log \left (-\frac {-4+e^3+4 x}{-1+x}\right ) \, dx\\ &=\frac {5}{8} (5+4 x)^2 \log \left (-\frac {4-e^3-4 x}{1-x}\right )+5 \int \left (-\frac {e^3}{2}-\frac {7}{-1+x}+15 x^2+8 x^3+\frac {56-18 e^3+e^6}{2 \left (-4+e^3+4 x\right )}\right ) \, dx+\frac {1}{8} \left (5 e^3\right ) \int \frac {(5+4 x)^2}{(-1+x) \left (-4+e^3+4 x\right )} \, dx\\ &=-\frac {5 e^3 x}{2}+25 x^3+10 x^4+\frac {5}{8} \left (56-18 e^3+e^6\right ) \log \left (4-e^3-4 x\right )+\frac {5}{8} (5+4 x)^2 \log \left (-\frac {4-e^3-4 x}{1-x}\right )-35 \log (1-x)+\frac {1}{8} \left (5 e^3\right ) \int \left (4+\frac {81}{e^3 (-1+x)}-\frac {4 \left (-9+e^3\right )^2}{e^3 \left (-4+e^3+4 x\right )}\right ) \, dx\\ &=25 x^3+10 x^4-\frac {5}{8} \left (9-e^3\right )^2 \log \left (4-e^3-4 x\right )+\frac {5}{8} \left (56-18 e^3+e^6\right ) \log \left (4-e^3-4 x\right )+\frac {5}{8} (5+4 x)^2 \log \left (-\frac {4-e^3-4 x}{1-x}\right )+\frac {125}{8} \log (1-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 162, normalized size = 6.23 \begin {gather*} 5 \left (5 x^3+2 x^4+5 \log \left (4-e^3-4 x\right )-\frac {5}{4} e^3 \log \left (4-e^3-4 x\right )-5 \log \left (-\frac {4-e^3-4 x}{1-x}\right )+\frac {5}{4} e^3 \log \left (-\frac {4-e^3-4 x}{1-x}\right )+5 x \log \left (-\frac {4-e^3-4 x}{1-x}\right )+2 x^2 \log \left (-\frac {4-e^3-4 x}{1-x}\right )-5 \log (1-x)+\frac {5}{4} e^3 \log (1-x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 37, normalized size = 1.42 \begin {gather*} 10 \, x^{4} + 25 \, x^{3} + 5 \, {\left (2 \, x^{2} + 5 \, x\right )} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.77, size = 546, normalized size = 21.00 \begin {gather*} \frac {5 \, {\left ({\left (e^{3} - 4\right )} e^{\left (-6\right )} + 4 \, e^{\left (-6\right )}\right )} {\left (\frac {2 \, {\left (4 \, x + e^{3} - 4\right )}^{2} e^{9} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{{\left (x - 1\right )}^{2}} - \frac {16 \, {\left (4 \, x + e^{3} - 4\right )} e^{9} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{x - 1} + 32 \, e^{9} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right ) + \frac {9 \, {\left (4 \, x + e^{3} - 4\right )}^{3} e^{6} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{{\left (x - 1\right )}^{3}} - \frac {108 \, {\left (4 \, x + e^{3} - 4\right )}^{2} e^{6} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{{\left (x - 1\right )}^{2}} + \frac {432 \, {\left (4 \, x + e^{3} - 4\right )} e^{6} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{x - 1} - 576 \, e^{6} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right ) + \frac {7 \, {\left (4 \, x + e^{3} - 4\right )}^{4} e^{3} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{{\left (x - 1\right )}^{4}} - \frac {112 \, {\left (4 \, x + e^{3} - 4\right )}^{3} e^{3} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{{\left (x - 1\right )}^{3}} + \frac {672 \, {\left (4 \, x + e^{3} - 4\right )}^{2} e^{3} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{{\left (x - 1\right )}^{2}} - \frac {1792 \, {\left (4 \, x + e^{3} - 4\right )} e^{3} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right )}{x - 1} + 1792 \, e^{3} \log \left (-\frac {4 \, x + e^{3} - 4}{x - 1}\right ) + \frac {13 \, {\left (4 \, x + e^{3} - 4\right )} e^{12}}{x - 1} + \frac {27 \, {\left (4 \, x + e^{3} - 4\right )}^{2} e^{9}}{{\left (x - 1\right )}^{2}} - \frac {216 \, {\left (4 \, x + e^{3} - 4\right )} e^{9}}{x - 1} + \frac {23 \, {\left (4 \, x + e^{3} - 4\right )}^{3} e^{6}}{{\left (x - 1\right )}^{3}} - \frac {276 \, {\left (4 \, x + e^{3} - 4\right )}^{2} e^{6}}{{\left (x - 1\right )}^{2}} + \frac {1104 \, {\left (4 \, x + e^{3} - 4\right )} e^{6}}{x - 1} + 2 \, e^{15} - 52 \, e^{12} + 432 \, e^{9} - 1472 \, e^{6}\right )}}{\frac {{\left (4 \, x + e^{3} - 4\right )}^{4}}{{\left (x - 1\right )}^{4}} - \frac {16 \, {\left (4 \, x + e^{3} - 4\right )}^{3}}{{\left (x - 1\right )}^{3}} + \frac {96 \, {\left (4 \, x + e^{3} - 4\right )}^{2}}{{\left (x - 1\right )}^{2}} - \frac {256 \, {\left (4 \, x + e^{3} - 4\right )}}{x - 1} + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 38, normalized size = 1.46
method | result | size |
risch | \(\left (10 x^{2}+25 x \right ) \ln \left (\frac {-{\mathrm e}^{3}-4 x +4}{x -1}\right )+10 x^{4}+25 x^{3}\) | \(38\) |
norman | \(25 x^{3}+10 x^{4}+25 x \ln \left (\frac {-{\mathrm e}^{3}-4 x +4}{x -1}\right )+10 x^{2} \ln \left (\frac {-{\mathrm e}^{3}-4 x +4}{x -1}\right )\) | \(52\) |
derivativedivides | \({\mathrm e}^{3} \left (\frac {5 \,{\mathrm e}^{3} \ln \left (-\frac {{\mathrm e}^{3}}{x -1}\right )}{8}+\frac {5 x}{2}-\frac {5}{2}-\frac {5 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right )^{2} \left (x -1\right )^{2}}{8}-5 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (x -1\right )^{2}-\frac {45 \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (x -1\right ) {\mathrm e}^{-3}}{4}+\frac {5 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) {\mathrm e}^{6}}{8}-\frac {45 \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right )}{4}+35 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right )-\frac {5 \,{\mathrm e}^{-3} \ln \left (-\frac {{\mathrm e}^{3}}{x -1}\right ) {\mathrm e}^{6}}{8}-\frac {5 \,{\mathrm e}^{-6} \left (x -1\right ) {\mathrm e}^{6}}{2}+115 \left (x -1\right ) {\mathrm e}^{-3}+135 \,{\mathrm e}^{-9} {\mathrm e}^{6} \left (x -1\right )^{2}+65 \,{\mathrm e}^{-12} {\mathrm e}^{9} \left (x -1\right )^{3}+10 \,{\mathrm e}^{-15} {\mathrm e}^{12} \left (x -1\right )^{4}\right )\) | \(254\) |
default | \({\mathrm e}^{3} \left (\frac {5 \,{\mathrm e}^{3} \ln \left (-\frac {{\mathrm e}^{3}}{x -1}\right )}{8}+\frac {5 x}{2}-\frac {5}{2}-\frac {5 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right )^{2} \left (x -1\right )^{2}}{8}-5 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (x -1\right )^{2}-\frac {45 \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) \left (x -1\right ) {\mathrm e}^{-3}}{4}+\frac {5 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right ) {\mathrm e}^{6}}{8}-\frac {45 \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right )}{4}+35 \,{\mathrm e}^{-3} \ln \left (-4-\frac {{\mathrm e}^{3}}{x -1}\right )-\frac {5 \,{\mathrm e}^{-3} \ln \left (-\frac {{\mathrm e}^{3}}{x -1}\right ) {\mathrm e}^{6}}{8}-\frac {5 \,{\mathrm e}^{-6} \left (x -1\right ) {\mathrm e}^{6}}{2}+115 \left (x -1\right ) {\mathrm e}^{-3}+135 \,{\mathrm e}^{-9} {\mathrm e}^{6} \left (x -1\right )^{2}+65 \,{\mathrm e}^{-12} {\mathrm e}^{9} \left (x -1\right )^{3}+10 \,{\mathrm e}^{-15} {\mathrm e}^{12} \left (x -1\right )^{4}\right )\) | \(254\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 641, normalized size = 24.65 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 27, normalized size = 1.04 \begin {gather*} 5\,x\,\left (2\,x+5\right )\,\left (\ln \left (-\frac {4\,x+{\mathrm {e}}^3-4}{x-1}\right )+x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 31, normalized size = 1.19 \begin {gather*} 10 x^{4} + 25 x^{3} + \left (10 x^{2} + 25 x\right ) \log {\left (\frac {- 4 x - e^{3} + 4}{x - 1} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________