Optimal. Leaf size=19 \[ \frac {1}{4} (-1+3 x) \log (x) \log \left (\frac {19}{2+x}\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.48, antiderivative size = 87, normalized size of antiderivative = 4.58, number of steps used = 22, number of rules used = 14, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {1593, 6742, 2357, 2295, 2317, 2391, 14, 43, 2389, 2394, 2315, 2370, 2411, 2351} \begin {gather*} \frac {1}{4} \text {Li}_2\left (\frac {x}{2}+1\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}+\frac {3}{2} \text {Li}_2\left (\frac {x+2}{2}\right )+\frac {7}{4} \log \left (\frac {x}{2}+1\right ) \log (x)+\frac {3}{4} (x+2) \log \left (\frac {19}{x+2}\right ) \log (x)-\frac {7}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{x+2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 1593
Rule 2295
Rule 2315
Rule 2317
Rule 2351
Rule 2357
Rule 2370
Rule 2389
Rule 2391
Rule 2394
Rule 2411
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-2+5 x+3 x^2\right ) \log \left (\frac {19}{2+x}\right )+\log (x) \left (x-3 x^2+\left (6 x+3 x^2\right ) \log \left (\frac {19}{2+x}\right )\right )}{x (8+4 x)} \, dx\\ &=\int \left (\frac {(1-3 x) \log (x)}{4 (2+x)}+\frac {(-1+3 x+3 x \log (x)) \log \left (\frac {19}{2+x}\right )}{4 x}\right ) \, dx\\ &=\frac {1}{4} \int \frac {(1-3 x) \log (x)}{2+x} \, dx+\frac {1}{4} \int \frac {(-1+3 x+3 x \log (x)) \log \left (\frac {19}{2+x}\right )}{x} \, dx\\ &=\frac {1}{4} \int \left (-3 \log (x)+\frac {7 \log (x)}{2+x}\right ) \, dx+\frac {1}{4} \int \left (3 \log \left (\frac {19}{2+x}\right )-\frac {\log \left (\frac {19}{2+x}\right )}{x}+3 \log (x) \log \left (\frac {19}{2+x}\right )\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {\log \left (\frac {19}{2+x}\right )}{x} \, dx\right )-\frac {3}{4} \int \log (x) \, dx+\frac {3}{4} \int \log \left (\frac {19}{2+x}\right ) \, dx+\frac {3}{4} \int \log (x) \log \left (\frac {19}{2+x}\right ) \, dx+\frac {7}{4} \int \frac {\log (x)}{2+x} \, dx\\ &=\frac {3 x}{4}+\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)-\frac {1}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )-\frac {1}{4} \int \frac {\log \left (-\frac {x}{2}\right )}{2+x} \, dx-\frac {3}{4} \int \left (1+\frac {(2+x) \log \left (\frac {19}{2+x}\right )}{x}\right ) \, dx+\frac {3}{4} \operatorname {Subst}\left (\int \log \left (\frac {19}{x}\right ) \, dx,x,2+x\right )-\frac {7}{4} \int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx\\ &=\frac {3 x}{4}+\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)+\frac {3}{4} (2+x) \log \left (\frac {19}{2+x}\right )-\frac {1}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )+\frac {1}{4} \text {Li}_2\left (1+\frac {x}{2}\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}-\frac {3}{4} \int \frac {(2+x) \log \left (\frac {19}{2+x}\right )}{x} \, dx\\ &=\frac {3 x}{4}+\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)+\frac {3}{4} (2+x) \log \left (\frac {19}{2+x}\right )-\frac {1}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )+\frac {1}{4} \text {Li}_2\left (1+\frac {x}{2}\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}-\frac {3}{4} \operatorname {Subst}\left (\int \frac {x \log \left (\frac {19}{x}\right )}{-2+x} \, dx,x,2+x\right )\\ &=\frac {3 x}{4}+\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)+\frac {3}{4} (2+x) \log \left (\frac {19}{2+x}\right )-\frac {1}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )+\frac {1}{4} \text {Li}_2\left (1+\frac {x}{2}\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}-\frac {3}{4} \operatorname {Subst}\left (\int \left (\log \left (\frac {19}{x}\right )+\frac {2 \log \left (\frac {19}{x}\right )}{-2+x}\right ) \, dx,x,2+x\right )\\ &=\frac {3 x}{4}+\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)+\frac {3}{4} (2+x) \log \left (\frac {19}{2+x}\right )-\frac {1}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )+\frac {1}{4} \text {Li}_2\left (1+\frac {x}{2}\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}-\frac {3}{4} \operatorname {Subst}\left (\int \log \left (\frac {19}{x}\right ) \, dx,x,2+x\right )-\frac {3}{2} \operatorname {Subst}\left (\int \frac {\log \left (\frac {19}{x}\right )}{-2+x} \, dx,x,2+x\right )\\ &=\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)-\frac {7}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )+\frac {1}{4} \text {Li}_2\left (1+\frac {x}{2}\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}-\frac {3}{2} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{2}\right )}{x} \, dx,x,2+x\right )\\ &=\frac {7}{4} \log \left (1+\frac {x}{2}\right ) \log (x)-\frac {7}{4} \log \left (-\frac {x}{2}\right ) \log \left (\frac {19}{2+x}\right )+\frac {3}{4} (2+x) \log (x) \log \left (\frac {19}{2+x}\right )+\frac {1}{4} \text {Li}_2\left (1+\frac {x}{2}\right )+\frac {7 \text {Li}_2\left (-\frac {x}{2}\right )}{4}+\frac {3}{2} \text {Li}_2\left (\frac {2+x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 1.00 \begin {gather*} \frac {1}{4} (-1+3 x) \log (x) \log \left (\frac {19}{2+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 17, normalized size = 0.89 \begin {gather*} \frac {1}{4} \, {\left (3 \, x - 1\right )} \log \relax (x) \log \left (\frac {19}{x + 2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.42, size = 30, normalized size = 1.58 \begin {gather*} \frac {3}{4} \, x \log \left (19\right ) \log \relax (x) - \frac {1}{4} \, {\left (3 \, x \log \relax (x) - \log \relax (x)\right )} \log \left (x + 2\right ) - \frac {1}{4} \, \log \left (19\right ) \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 27, normalized size = 1.42
method | result | size |
norman | \(-\frac {\ln \relax (x ) \ln \left (\frac {19}{2+x}\right )}{4}+\frac {3 \ln \relax (x ) \ln \left (\frac {19}{2+x}\right ) x}{4}\) | \(27\) |
risch | \(\left (-\frac {3 x \ln \relax (x )}{4}+\frac {\ln \relax (x )}{4}\right ) \ln \left (2+x \right )+\frac {3 x \ln \relax (x ) \ln \left (19\right )}{4}-\frac {\ln \relax (x ) \ln \left (19\right )}{4}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 28, normalized size = 1.47 \begin {gather*} -\frac {1}{4} \, {\left (3 \, x - 1\right )} \log \left (x + 2\right ) \log \relax (x) + \frac {1}{4} \, {\left (3 \, x \log \left (19\right ) - \log \left (19\right )\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.76, size = 17, normalized size = 0.89 \begin {gather*} \ln \relax (x)\,\left (\frac {3\,x}{4}-\frac {1}{4}\right )\,\left (\ln \left (19\right )+\ln \left (\frac {1}{x+2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 19, normalized size = 1.00 \begin {gather*} \left (\frac {3 x \log {\relax (x )}}{4} - \frac {\log {\relax (x )}}{4}\right ) \log {\left (\frac {19}{x + 2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________