3.69.88
Optimal. Leaf size=30
________________________________________________________________________________________
Rubi [F] time = 13.39, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(3*x^2 + x^3 + E^(x + x^2)*(-6*x + 6*x^2 + 21*x^3 + 6*x^4) + (6*x + 2*x^2 + E^(x + x^2)*(9*x + 21*x^2 + 6*
x^3))*Log[2/(E^(5/3)*(3 + x))] + (3 + x)*Log[2/(E^(5/3)*(3 + x))]^2)/(3*x^3 + x^4 + (6*x^2 + 2*x^3)*Log[2/(E^(
5/3)*(3 + x))] + (3*x + x^2)*Log[2/(E^(5/3)*(3 + x))]^2),x]
[Out]
Log[x] + 6*Defer[Int][(-3*x + 5*(1 - (3*Log[2])/5) - 3*Log[(3 + x)^(-1)])^(-1), x] - 27*Defer[Int][E^(x + x^2)
/(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)])^2, x] + 81*Defer[Int][1/((-3 - x)*(3*x - 5*(1 - (3*Log[2])
/5) + 3*Log[(3 + x)^(-1)])^2), x] + 81*Defer[Int][1/((3 + x)*(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)]
)^2), x] + 27*Defer[Int][E^(x + x^2)/((3 + x)*(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)])^2), x] + 6*De
fer[Int][(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)])^(-1), x] + 9*Defer[Int][E^(x + x^2)/(3*x - 5*(1 -
(3*Log[2])/5) + 3*Log[(3 + x)^(-1)]), x] + 18*Defer[Int][(E^(x + x^2)*x)/(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(
3 + x)^(-1)]), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 31, normalized size = 1.03
Antiderivative was successfully verified.
[In]
Integrate[(3*x^2 + x^3 + E^(x + x^2)*(-6*x + 6*x^2 + 21*x^3 + 6*x^4) + (6*x + 2*x^2 + E^(x + x^2)*(9*x + 21*x^
2 + 6*x^3))*Log[2/(E^(5/3)*(3 + x))] + (3 + x)*Log[2/(E^(5/3)*(3 + x))]^2)/(3*x^3 + x^4 + (6*x^2 + 2*x^3)*Log[
2/(E^(5/3)*(3 + x))] + (3*x + x^2)*Log[2/(E^(5/3)*(3 + x))]^2),x]
[Out]
Log[x] + (9*E^(x + x^2))/(-5 + 3*x + 3*Log[2] + 3*Log[(3 + x)^(-1)])
________________________________________________________________________________________
fricas [A] time = 1.02, size = 39, normalized size = 1.30
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((3+x)*log(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*log(2/(3+x)/exp(5/3))+(6*x^
4+21*x^3+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*log(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*log(2/(3+x)/exp(5/3
))+x^4+3*x^3),x, algorithm="fricas")
[Out]
((x + log(2*e^(-5/3)/(x + 3)))*log(x) + 3*e^(x^2 + x))/(x + log(2*e^(-5/3)/(x + 3)))
________________________________________________________________________________________
giac [A] time = 0.57, size = 48, normalized size = 1.60
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((3+x)*log(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*log(2/(3+x)/exp(5/3))+(6*x^
4+21*x^3+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*log(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*log(2/(3+x)/exp(5/3
))+x^4+3*x^3),x, algorithm="giac")
[Out]
(3*x*log(x) + 3*log(x)*log(2/(x + 3)) + 9*e^(x^2 + x) - 5*log(x))/(3*x + 3*log(2/(x + 3)) - 5)
________________________________________________________________________________________
maple [C] time = 0.54, size = 34, normalized size = 1.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((3+x)*ln(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*ln(2/(3+x)/exp(5/3))+(6*x^4+21*x^3
+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*ln(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*ln(2/(3+x)/exp(5/3))+x^4+3*x
^3),x,method=_RETURNVERBOSE)
[Out]
ln(x)+18*I*exp((x+1)*x)/(6*I*ln(2)+6*I*x-6*I*ln(3+x)-10*I)
________________________________________________________________________________________
maxima [A] time = 0.49, size = 28, normalized size = 0.93
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((3+x)*log(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*log(2/(3+x)/exp(5/3))+(6*x^
4+21*x^3+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*log(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*log(2/(3+x)/exp(5/3
))+x^4+3*x^3),x, algorithm="maxima")
[Out]
9*e^(x^2 + x)/(3*x + 3*log(2) - 3*log(x + 3) - 5) + log(x)
________________________________________________________________________________________
mupad [B] time = 0.44, size = 41, normalized size = 1.37
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log((2*exp(-5/3))/(x + 3))*(6*x + exp(x + x^2)*(9*x + 21*x^2 + 6*x^3) + 2*x^2) + exp(x + x^2)*(6*x^2 - 6*
x + 21*x^3 + 6*x^4) + 3*x^2 + x^3 + log((2*exp(-5/3))/(x + 3))^2*(x + 3))/(log((2*exp(-5/3))/(x + 3))^2*(3*x +
x^2) + log((2*exp(-5/3))/(x + 3))*(6*x^2 + 2*x^3) + 3*x^3 + x^4),x)
[Out]
(3*exp(x + x^2) + log((2*exp(-5/3))/(x + 3))*log(x) + x*log(x))/(x + log((2*exp(-5/3))/(x + 3)))
________________________________________________________________________________________
sympy [A] time = 0.52, size = 24, normalized size = 0.80
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((3+x)*ln(2/(3+x)/exp(5/3))**2+((6*x**3+21*x**2+9*x)*exp(x**2+x)+2*x**2+6*x)*ln(2/(3+x)/exp(5/3))+(6
*x**4+21*x**3+6*x**2-6*x)*exp(x**2+x)+x**3+3*x**2)/((x**2+3*x)*ln(2/(3+x)/exp(5/3))**2+(2*x**3+6*x**2)*ln(2/(3
+x)/exp(5/3))+x**4+3*x**3),x)
[Out]
log(x) + 3*exp(x**2 + x)/(x + log(2*exp(-5/3)/(x + 3)))
________________________________________________________________________________________