3.69.88 3x2+x3+ex+x2(6x+6x2+21x3+6x4)+(6x+2x2+ex+x2(9x+21x2+6x3))log(2e5/3(3+x))+(3+x)log2(2e5/3(3+x))3x3+x4+(6x2+2x3)log(2e5/3(3+x))+(3x+x2)log2(2e5/3(3+x))dx

Optimal. Leaf size=30 2+log(x)+3ex+x2x+log(2e5/3(3+x))

________________________________________________________________________________________

Rubi [F]  time = 13.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 3x2+x3+ex+x2(6x+6x2+21x3+6x4)+(6x+2x2+ex+x2(9x+21x2+6x3))log(2e5/3(3+x))+(3+x)log2(2e5/3(3+x))3x3+x4+(6x2+2x3)log(2e5/3(3+x))+(3x+x2)log2(2e5/3(3+x))dx

Verification is not applicable to the result.

[In]

Int[(3*x^2 + x^3 + E^(x + x^2)*(-6*x + 6*x^2 + 21*x^3 + 6*x^4) + (6*x + 2*x^2 + E^(x + x^2)*(9*x + 21*x^2 + 6*
x^3))*Log[2/(E^(5/3)*(3 + x))] + (3 + x)*Log[2/(E^(5/3)*(3 + x))]^2)/(3*x^3 + x^4 + (6*x^2 + 2*x^3)*Log[2/(E^(
5/3)*(3 + x))] + (3*x + x^2)*Log[2/(E^(5/3)*(3 + x))]^2),x]

[Out]

Log[x] + 6*Defer[Int][(-3*x + 5*(1 - (3*Log[2])/5) - 3*Log[(3 + x)^(-1)])^(-1), x] - 27*Defer[Int][E^(x + x^2)
/(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)])^2, x] + 81*Defer[Int][1/((-3 - x)*(3*x - 5*(1 - (3*Log[2])
/5) + 3*Log[(3 + x)^(-1)])^2), x] + 81*Defer[Int][1/((3 + x)*(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)]
)^2), x] + 27*Defer[Int][E^(x + x^2)/((3 + x)*(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)])^2), x] + 6*De
fer[Int][(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(3 + x)^(-1)])^(-1), x] + 9*Defer[Int][E^(x + x^2)/(3*x - 5*(1 -
(3*Log[2])/5) + 3*Log[(3 + x)^(-1)]), x] + 18*Defer[Int][(E^(x + x^2)*x)/(3*x - 5*(1 - (3*Log[2])/5) + 3*Log[(
3 + x)^(-1)]), x]

Rubi steps

integral=3x2+x3+3ex+x2x(2+2x+7x2+2x3)+x(3+x)(2+ex+x2(3+6x))(53+log(2)+log(13+x))+(3+x)(53+log(2)+log(13+x))2x(3+x)(x53(13log(2)5)+log(13+x))2dx=9(3x2+x3+3ex+x2x(2+2x+7x2+2x3)+x(3+x)(2+ex+x2(3+6x))(53+log(2)+log(13+x))+(3+x)(53+log(2)+log(13+x))2)x(3+x)(3x5(13log(2)5)+3log(13+x))2dx=93x2+x3+3ex+x2x(2+2x+7x2+2x3)+x(3+x)(2+ex+x2(3+6x))(53+log(2)+log(13+x))+(3+x)(53+log(2)+log(13+x))2x(3+x)(3x5(13log(2)5)+3log(13+x))2dx=9(3x(3+x)(3x5(13log(2)5)+3log(13+x))2+x2(3+x)(3x5(13log(2)5)+3log(13+x))2+(5(13log(2)5)3log(13+x))29x(3x5(13log(2)5)+3log(13+x))2+10(13log(2)5)+6log(13+x)3(3x5(13log(2)5)+3log(13+x))2+ex+x2(6x329x(121log(2)29)21(13log(2)7)+11x2(1+6log(2)11)+9log(13+x)+21xlog(13+x)+6x2log(13+x))(3+x)(3x5(13log(2)5)+3log(13+x))2)dx=310(13log(2)5)+6log(13+x)(3x5(13log(2)5)+3log(13+x))2dx+9x2(3+x)(3x5(13log(2)5)+3log(13+x))2dx+9ex+x2(6x329x(121log(2)29)21(13log(2)7)+11x2(1+6log(2)11)+9log(13+x)+21xlog(13+x)+6x2log(13+x))(3+x)(3x5(13log(2)5)+3log(13+x))2dx+27x(3+x)(3x5(13log(2)5)+3log(13+x))2dx+(5(13log(2)5)3log(13+x))2x(3x5(13log(2)5)+3log(13+x))2dx=3(6x(3x5(13log(2)5)+3log(13+x))2+23x5(13log(2)5)+3log(13+x))dx+9ex+x2(6x321(13log(2)7)+x(29+21log(2))+x2(11+log(64))+3(3+7x+2x2)log(13+x))(3+x)(3x5(13log(2)5)+3log(13+x))2dx+9(3(3x5(13log(2)5)+3log(13+x))2+x(3x5(13log(2)5)+3log(13+x))2+9(3+x)(3x5(13log(2)5)+3log(13+x))2)dx+27(1(3x5(13log(2)5)+3log(13+x))2+3(3x)(3x5(13log(2)5)+3log(13+x))2)dx+(1x+63x+5(13log(2)5)3log(13+x)+9x(3x5(13log(2)5)+3log(13+x))2)dx=log(x)+613x+5(13log(2)5)3log(13+x)dx+613x5(13log(2)5)+3log(13+x)dx+2(9x(3x5(13log(2)5)+3log(13+x))2dx)+9(3ex+x2(2x)(3+x)(3x5(13log(2)5)+3log(13+x))2+ex+x2(1+2x)3x5(13log(2)5)+3log(13+x))dx18x(3x5(13log(2)5)+3log(13+x))2dx+811(3x)(3x5(13log(2)5)+3log(13+x))2dx+811(3+x)(3x5(13log(2)5)+3log(13+x))2dx=log(x)+613x+5(13log(2)5)3log(13+x)dx+613x5(13log(2)5)+3log(13+x)dx+2(9x(3x5(13log(2)5)+3log(13+x))2dx)+9ex+x2(1+2x)3x5(13log(2)5)+3log(13+x)dx18x(3x5(13log(2)5)+3log(13+x))2dx+27ex+x2(2x)(3+x)(3x5(13log(2)5)+3log(13+x))2dx+811(3x)(3x5(13log(2)5)+3log(13+x))2dx+811(3+x)(3x5(13log(2)5)+3log(13+x))2dx=log(x)+613x+5(13log(2)5)3log(13+x)dx+613x5(13log(2)5)+3log(13+x)dx+2(9x(3x5(13log(2)5)+3log(13+x))2dx)+9(ex+x23x5(13log(2)5)+3log(13+x)+2ex+x2x3x5(13log(2)5)+3log(13+x))dx18x(3x5(13log(2)5)+3log(13+x))2dx+27(ex+x2(3x5(13log(2)5)+3log(13+x))2+ex+x2(3+x)(3x5(13log(2)5)+3log(13+x))2)dx+811(3x)(3x5(13log(2)5)+3log(13+x))2dx+811(3+x)(3x5(13log(2)5)+3log(13+x))2dx=log(x)+613x+5(13log(2)5)3log(13+x)dx+613x5(13log(2)5)+3log(13+x)dx+2(9x(3x5(13log(2)5)+3log(13+x))2dx)+9ex+x23x5(13log(2)5)+3log(13+x)dx18x(3x5(13log(2)5)+3log(13+x))2dx+18ex+x2x3x5(13log(2)5)+3log(13+x)dx27ex+x2(3x5(13log(2)5)+3log(13+x))2dx+27ex+x2(3+x)(3x5(13log(2)5)+3log(13+x))2dx+811(3x)(3x5(13log(2)5)+3log(13+x))2dx+811(3+x)(3x5(13log(2)5)+3log(13+x))2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 31, normalized size = 1.03 log(x)+9ex+x25+3x+3log(2)+3log(13+x)

Antiderivative was successfully verified.

[In]

Integrate[(3*x^2 + x^3 + E^(x + x^2)*(-6*x + 6*x^2 + 21*x^3 + 6*x^4) + (6*x + 2*x^2 + E^(x + x^2)*(9*x + 21*x^
2 + 6*x^3))*Log[2/(E^(5/3)*(3 + x))] + (3 + x)*Log[2/(E^(5/3)*(3 + x))]^2)/(3*x^3 + x^4 + (6*x^2 + 2*x^3)*Log[
2/(E^(5/3)*(3 + x))] + (3*x + x^2)*Log[2/(E^(5/3)*(3 + x))]^2),x]

[Out]

Log[x] + (9*E^(x + x^2))/(-5 + 3*x + 3*Log[2] + 3*Log[(3 + x)^(-1)])

________________________________________________________________________________________

fricas [A]  time = 1.02, size = 39, normalized size = 1.30 (x+log(2e(53)x+3))log(x)+3e(x2+x)x+log(2e(53)x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*log(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*log(2/(3+x)/exp(5/3))+(6*x^
4+21*x^3+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*log(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*log(2/(3+x)/exp(5/3
))+x^4+3*x^3),x, algorithm="fricas")

[Out]

((x + log(2*e^(-5/3)/(x + 3)))*log(x) + 3*e^(x^2 + x))/(x + log(2*e^(-5/3)/(x + 3)))

________________________________________________________________________________________

giac [A]  time = 0.57, size = 48, normalized size = 1.60 3xlog(x)+3log(x)log(2x+3)+9e(x2+x)5log(x)3x+3log(2x+3)5

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*log(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*log(2/(3+x)/exp(5/3))+(6*x^
4+21*x^3+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*log(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*log(2/(3+x)/exp(5/3
))+x^4+3*x^3),x, algorithm="giac")

[Out]

(3*x*log(x) + 3*log(x)*log(2/(x + 3)) + 9*e^(x^2 + x) - 5*log(x))/(3*x + 3*log(2/(x + 3)) - 5)

________________________________________________________________________________________

maple [C]  time = 0.54, size = 34, normalized size = 1.13




method result size



risch ln(x)+18ie(x+1)x6iln(2)+6ix6iln(3+x)10i 34



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((3+x)*ln(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*ln(2/(3+x)/exp(5/3))+(6*x^4+21*x^3
+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*ln(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*ln(2/(3+x)/exp(5/3))+x^4+3*x
^3),x,method=_RETURNVERBOSE)

[Out]

ln(x)+18*I*exp((x+1)*x)/(6*I*ln(2)+6*I*x-6*I*ln(3+x)-10*I)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 28, normalized size = 0.93 9e(x2+x)3x+3log(2)3log(x+3)5+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*log(2/(3+x)/exp(5/3))^2+((6*x^3+21*x^2+9*x)*exp(x^2+x)+2*x^2+6*x)*log(2/(3+x)/exp(5/3))+(6*x^
4+21*x^3+6*x^2-6*x)*exp(x^2+x)+x^3+3*x^2)/((x^2+3*x)*log(2/(3+x)/exp(5/3))^2+(2*x^3+6*x^2)*log(2/(3+x)/exp(5/3
))+x^4+3*x^3),x, algorithm="maxima")

[Out]

9*e^(x^2 + x)/(3*x + 3*log(2) - 3*log(x + 3) - 5) + log(x)

________________________________________________________________________________________

mupad [B]  time = 0.44, size = 41, normalized size = 1.37 3ex2+x+ln(2e53x+3)ln(x)+xln(x)x+ln(2e53x+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log((2*exp(-5/3))/(x + 3))*(6*x + exp(x + x^2)*(9*x + 21*x^2 + 6*x^3) + 2*x^2) + exp(x + x^2)*(6*x^2 - 6*
x + 21*x^3 + 6*x^4) + 3*x^2 + x^3 + log((2*exp(-5/3))/(x + 3))^2*(x + 3))/(log((2*exp(-5/3))/(x + 3))^2*(3*x +
 x^2) + log((2*exp(-5/3))/(x + 3))*(6*x^2 + 2*x^3) + 3*x^3 + x^4),x)

[Out]

(3*exp(x + x^2) + log((2*exp(-5/3))/(x + 3))*log(x) + x*log(x))/(x + log((2*exp(-5/3))/(x + 3)))

________________________________________________________________________________________

sympy [A]  time = 0.52, size = 24, normalized size = 0.80 log(x)+3ex2+xx+log(2(x+3)e53)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((3+x)*ln(2/(3+x)/exp(5/3))**2+((6*x**3+21*x**2+9*x)*exp(x**2+x)+2*x**2+6*x)*ln(2/(3+x)/exp(5/3))+(6
*x**4+21*x**3+6*x**2-6*x)*exp(x**2+x)+x**3+3*x**2)/((x**2+3*x)*ln(2/(3+x)/exp(5/3))**2+(2*x**3+6*x**2)*ln(2/(3
+x)/exp(5/3))+x**4+3*x**3),x)

[Out]

log(x) + 3*exp(x**2 + x)/(x + log(2*exp(-5/3)/(x + 3)))

________________________________________________________________________________________