3.69.89 4e10+3x2+e5(1+7x)4e10+7e5x+3x2dx

Optimal. Leaf size=21 e4+x+log(3+xx+x2e5)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 20, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 3, integrand size = 40, number of rulesintegrand size = 0.075, Rules used = {1657, 616, 31} xlog(x+e5)+log(3x+4e5)

Antiderivative was successfully verified.

[In]

Int[(4*E^10 + 3*x^2 + E^5*(-1 + 7*x))/(4*E^10 + 7*E^5*x + 3*x^2),x]

[Out]

x - Log[E^5 + x] + Log[4*E^5 + 3*x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 616

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[c/q, Int[1/Simp
[b/2 - q/2 + c*x, x], x], x] - Dist[c/q, Int[1/Simp[b/2 + q/2 + c*x, x], x], x]] /; FreeQ[{a, b, c}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c] && PerfectSquareQ[b^2 - 4*a*c]

Rule 1657

Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x + c*x^2)^p, x
], x] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps

integral=(1e54e10+7e5x+3x2)dx=xe514e10+7e5x+3x2dx=x313e5+3xdx+314e5+3xdx=xlog(e5+x)+log(4e5+3x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 20, normalized size = 0.95 xlog(e5+x)+log(4e5+3x)

Antiderivative was successfully verified.

[In]

Integrate[(4*E^10 + 3*x^2 + E^5*(-1 + 7*x))/(4*E^10 + 7*E^5*x + 3*x^2),x]

[Out]

x - Log[E^5 + x] + Log[4*E^5 + 3*x]

________________________________________________________________________________________

fricas [A]  time = 0.88, size = 18, normalized size = 0.86 x+log(3x+4e5)log(x+e5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*exp(5)^2+(7*x-1)*exp(5)+3*x^2)/(4*exp(5)^2+7*x*exp(5)+3*x^2),x, algorithm="fricas")

[Out]

x + log(3*x + 4*e^5) - log(x + e^5)

________________________________________________________________________________________

giac [A]  time = 0.15, size = 26, normalized size = 1.24 xlog(|6x+6e5||6x+8e5|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*exp(5)^2+(7*x-1)*exp(5)+3*x^2)/(4*exp(5)^2+7*x*exp(5)+3*x^2),x, algorithm="giac")

[Out]

x - log(abs(6*x + 6*e^5)/abs(6*x + 8*e^5))

________________________________________________________________________________________

maple [A]  time = 0.10, size = 19, normalized size = 0.90




method result size



norman xln(e5+x)+ln(4e5+3x) 19
risch xln(e5+x)+ln(4e5+3x) 19
default x+2e5arctanh(7e5+6xe10)e10 43



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*exp(5)^2+(7*x-1)*exp(5)+3*x^2)/(4*exp(5)^2+7*x*exp(5)+3*x^2),x,method=_RETURNVERBOSE)

[Out]

x-ln(exp(5)+x)+ln(4*exp(5)+3*x)

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 18, normalized size = 0.86 x+log(3x+4e5)log(x+e5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*exp(5)^2+(7*x-1)*exp(5)+3*x^2)/(4*exp(5)^2+7*x*exp(5)+3*x^2),x, algorithm="maxima")

[Out]

x + log(3*x + 4*e^5) - log(x + e^5)

________________________________________________________________________________________

mupad [B]  time = 4.09, size = 12, normalized size = 0.57 x+2atanh(6xe5+7)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*exp(10) + 3*x^2 + exp(5)*(7*x - 1))/(4*exp(10) + 7*x*exp(5) + 3*x^2),x)

[Out]

x + 2*atanh(6*x*exp(-5) + 7)

________________________________________________________________________________________

sympy [A]  time = 0.19, size = 17, normalized size = 0.81 xlog(x+e5)+log(x+4e53)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((4*exp(5)**2+(7*x-1)*exp(5)+3*x**2)/(4*exp(5)**2+7*x*exp(5)+3*x**2),x)

[Out]

x - log(x + exp(5)) + log(x + 4*exp(5)/3)

________________________________________________________________________________________