Optimal. Leaf size=21 \[ e^4+x+\log \left (3+\frac {x}{x+\frac {x^2}{e^5}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 20, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 3, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {1657, 616, 31} \begin {gather*} x-\log \left (x+e^5\right )+\log \left (3 x+4 e^5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 616
Rule 1657
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {e^5}{4 e^{10}+7 e^5 x+3 x^2}\right ) \, dx\\ &=x-e^5 \int \frac {1}{4 e^{10}+7 e^5 x+3 x^2} \, dx\\ &=x-3 \int \frac {1}{3 e^5+3 x} \, dx+3 \int \frac {1}{4 e^5+3 x} \, dx\\ &=x-\log \left (e^5+x\right )+\log \left (4 e^5+3 x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.95 \begin {gather*} x-\log \left (e^5+x\right )+\log \left (4 e^5+3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 18, normalized size = 0.86 \begin {gather*} x + \log \left (3 \, x + 4 \, e^{5}\right ) - \log \left (x + e^{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 26, normalized size = 1.24 \begin {gather*} x - \log \left (\frac {{\left | 6 \, x + 6 \, e^{5} \right |}}{{\left | 6 \, x + 8 \, e^{5} \right |}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 19, normalized size = 0.90
method | result | size |
norman | \(x -\ln \left ({\mathrm e}^{5}+x \right )+\ln \left (4 \,{\mathrm e}^{5}+3 x \right )\) | \(19\) |
risch | \(x -\ln \left ({\mathrm e}^{5}+x \right )+\ln \left (4 \,{\mathrm e}^{5}+3 x \right )\) | \(19\) |
default | \(x +\frac {2 \,{\mathrm e}^{5} \arctanh \left (\frac {7 \,{\mathrm e}^{5}+6 x}{\sqrt {{\mathrm e}^{10}}}\right )}{\sqrt {{\mathrm e}^{10}}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 18, normalized size = 0.86 \begin {gather*} x + \log \left (3 \, x + 4 \, e^{5}\right ) - \log \left (x + e^{5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.09, size = 12, normalized size = 0.57 \begin {gather*} x+2\,\mathrm {atanh}\left (6\,x\,{\mathrm {e}}^{-5}+7\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.81 \begin {gather*} x - \log {\left (x + e^{5} \right )} + \log {\left (x + \frac {4 e^{5}}{3} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________