3.69.91 2x+x2+3log(x)(x2x3+xlog(x))log(4x3x2+2x3+x4+(2x2x2)log(x)+log2(x))dx

Optimal. Leaf size=19 log(log(4x(x+xlog(x)x)2))

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 2, number of rules used = 2, integrand size = 68, number of rulesintegrand size = 0.029, Rules used = {6688, 6684} log(log(4x3(x2+xlog(x))2))

Antiderivative was successfully verified.

[In]

Int[(-2 - x + x^2 + 3*Log[x])/((-x^2 - x^3 + x*Log[x])*Log[(4*x^3)/(x^2 + 2*x^3 + x^4 + (-2*x - 2*x^2)*Log[x]
+ Log[x]^2)]),x]

[Out]

Log[Log[(4*x^3)/(x + x^2 - Log[x])^2]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rubi steps

integral=2+xx23log(x)x(x+x2log(x))log(4x3(x+x2log(x))2)dx=log(log(4x3(x+x2log(x))2))

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 18, normalized size = 0.95 log(log(4x3(x+x2log(x))2))

Antiderivative was successfully verified.

[In]

Integrate[(-2 - x + x^2 + 3*Log[x])/((-x^2 - x^3 + x*Log[x])*Log[(4*x^3)/(x^2 + 2*x^3 + x^4 + (-2*x - 2*x^2)*L
og[x] + Log[x]^2)]),x]

[Out]

Log[Log[(4*x^3)/(x + x^2 - Log[x])^2]]

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 34, normalized size = 1.79 log(log(4x3x4+2x3+x22(x2+x)log(x)+log(x)2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*log(x)+x^2-x-2)/(x*log(x)-x^3-x^2)/log(4*x^3/(log(x)^2+(-2*x^2-2*x)*log(x)+x^4+2*x^3+x^2)),x, alg
orithm="fricas")

[Out]

log(log(4*x^3/(x^4 + 2*x^3 + x^2 - 2*(x^2 + x)*log(x) + log(x)^2)))

________________________________________________________________________________________

giac [B]  time = 0.36, size = 41, normalized size = 2.16 log(2log(2)log(x4+2x32x2log(x)+x22xlog(x)+log(x)2)+3log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*log(x)+x^2-x-2)/(x*log(x)-x^3-x^2)/log(4*x^3/(log(x)^2+(-2*x^2-2*x)*log(x)+x^4+2*x^3+x^2)),x, alg
orithm="giac")

[Out]

log(2*log(2) - log(x^4 + 2*x^3 - 2*x^2*log(x) + x^2 - 2*x*log(x) + log(x)^2) + 3*log(x))

________________________________________________________________________________________

maple [C]  time = 0.13, size = 379, normalized size = 19.95




method result size



risch ln(ln(x2ln(x)+x)+i(πcsgn(ix)2csgn(ix2)2πcsgn(ix)csgn(ix2)2+πcsgn(ix)csgn(ix2)csgn(ix3)πcsgn(ix)csgn(ix3)2+πcsgn(ix2)3πcsgn(ix2)csgn(ix3)2+πcsgn(ix3)3+πcsgn(ix3)csgn(i(x2+ln(x)x)2)csgn(ix3(x2+ln(x)x)2)πcsgn(ix3)csgn(ix3(x2+ln(x)x)2)2πcsgn(i(x2+ln(x)x)2)csgn(ix3(x2+ln(x)x)2)2πcsgn(i(x2+ln(x)x))2csgn(i(x2+ln(x)x)2)2πcsgn(i(x2+ln(x)x))csgn(i(x2+ln(x)x)2)2πcsgn(i(x2+ln(x)x)2)3+πcsgn(ix3(x2+ln(x)x)2)3+4iln(2)+6iln(x))4) 379



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*ln(x)+x^2-x-2)/(x*ln(x)-x^3-x^2)/ln(4*x^3/(ln(x)^2+(-2*x^2-2*x)*ln(x)+x^4+2*x^3+x^2)),x,method=_RETURNV
ERBOSE)

[Out]

ln(ln(x^2-ln(x)+x)+1/4*I*(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x)*csgn(I*x^2)*csg
n(I*x^3)-Pi*csgn(I*x)*csgn(I*x^3)^2+Pi*csgn(I*x^2)^3-Pi*csgn(I*x^2)*csgn(I*x^3)^2+Pi*csgn(I*x^3)^3+Pi*csgn(I*x
^3)*csgn(I/(-x^2+ln(x)-x)^2)*csgn(I*x^3/(-x^2+ln(x)-x)^2)-Pi*csgn(I*x^3)*csgn(I*x^3/(-x^2+ln(x)-x)^2)^2-Pi*csg
n(I/(-x^2+ln(x)-x)^2)*csgn(I*x^3/(-x^2+ln(x)-x)^2)^2-Pi*csgn(I*(-x^2+ln(x)-x))^2*csgn(I*(-x^2+ln(x)-x)^2)-2*Pi
*csgn(I*(-x^2+ln(x)-x))*csgn(I*(-x^2+ln(x)-x)^2)^2-Pi*csgn(I*(-x^2+ln(x)-x)^2)^3+Pi*csgn(I*x^3/(-x^2+ln(x)-x)^
2)^3+4*I*ln(2)+6*I*ln(x)))

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 22, normalized size = 1.16 log(log(2)+log(x2x+log(x))32log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*log(x)+x^2-x-2)/(x*log(x)-x^3-x^2)/log(4*x^3/(log(x)^2+(-2*x^2-2*x)*log(x)+x^4+2*x^3+x^2)),x, alg
orithm="maxima")

[Out]

log(-log(2) + log(-x^2 - x + log(x)) - 3/2*log(x))

________________________________________________________________________________________

mupad [B]  time = 5.29, size = 38, normalized size = 2.00 ln(ln(4x3ln(x)2ln(x)(2x2+2x)+x2+2x3+x4))

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x - 3*log(x) - x^2 + 2)/(log((4*x^3)/(log(x)^2 - log(x)*(2*x + 2*x^2) + x^2 + 2*x^3 + x^4))*(x^2 - x*log(
x) + x^3)),x)

[Out]

log(log((4*x^3)/(log(x)^2 - log(x)*(2*x + 2*x^2) + x^2 + 2*x^3 + x^4)))

________________________________________________________________________________________

sympy [B]  time = 0.64, size = 37, normalized size = 1.95 log(log(4x3x4+2x3+x2+(2x22x)log(x)+log(x)2))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*ln(x)+x**2-x-2)/(x*ln(x)-x**3-x**2)/ln(4*x**3/(ln(x)**2+(-2*x**2-2*x)*ln(x)+x**4+2*x**3+x**2)),x)

[Out]

log(log(4*x**3/(x**4 + 2*x**3 + x**2 + (-2*x**2 - 2*x)*log(x) + log(x)**2)))

________________________________________________________________________________________