3.69.91
Optimal. Leaf size=19
________________________________________________________________________________________
Rubi [A] time = 0.39, antiderivative size = 18, normalized size of antiderivative = 0.95,
number of steps used = 2, number of rules used = 2, integrand size = 68, = 0.029, Rules used =
{6688, 6684}
Antiderivative was successfully verified.
[In]
Int[(-2 - x + x^2 + 3*Log[x])/((-x^2 - x^3 + x*Log[x])*Log[(4*x^3)/(x^2 + 2*x^3 + x^4 + (-2*x - 2*x^2)*Log[x]
+ Log[x]^2)]),x]
[Out]
Log[Log[(4*x^3)/(x + x^2 - Log[x])^2]]
Rule 6684
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 18, normalized size = 0.95
Antiderivative was successfully verified.
[In]
Integrate[(-2 - x + x^2 + 3*Log[x])/((-x^2 - x^3 + x*Log[x])*Log[(4*x^3)/(x^2 + 2*x^3 + x^4 + (-2*x - 2*x^2)*L
og[x] + Log[x]^2)]),x]
[Out]
Log[Log[(4*x^3)/(x + x^2 - Log[x])^2]]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 34, normalized size = 1.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*log(x)+x^2-x-2)/(x*log(x)-x^3-x^2)/log(4*x^3/(log(x)^2+(-2*x^2-2*x)*log(x)+x^4+2*x^3+x^2)),x, alg
orithm="fricas")
[Out]
log(log(4*x^3/(x^4 + 2*x^3 + x^2 - 2*(x^2 + x)*log(x) + log(x)^2)))
________________________________________________________________________________________
giac [B] time = 0.36, size = 41, normalized size = 2.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*log(x)+x^2-x-2)/(x*log(x)-x^3-x^2)/log(4*x^3/(log(x)^2+(-2*x^2-2*x)*log(x)+x^4+2*x^3+x^2)),x, alg
orithm="giac")
[Out]
log(2*log(2) - log(x^4 + 2*x^3 - 2*x^2*log(x) + x^2 - 2*x*log(x) + log(x)^2) + 3*log(x))
________________________________________________________________________________________
maple [C] time = 0.13, size = 379, normalized size = 19.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((3*ln(x)+x^2-x-2)/(x*ln(x)-x^3-x^2)/ln(4*x^3/(ln(x)^2+(-2*x^2-2*x)*ln(x)+x^4+2*x^3+x^2)),x,method=_RETURNV
ERBOSE)
[Out]
ln(ln(x^2-ln(x)+x)+1/4*I*(Pi*csgn(I*x)^2*csgn(I*x^2)-2*Pi*csgn(I*x)*csgn(I*x^2)^2+Pi*csgn(I*x)*csgn(I*x^2)*csg
n(I*x^3)-Pi*csgn(I*x)*csgn(I*x^3)^2+Pi*csgn(I*x^2)^3-Pi*csgn(I*x^2)*csgn(I*x^3)^2+Pi*csgn(I*x^3)^3+Pi*csgn(I*x
^3)*csgn(I/(-x^2+ln(x)-x)^2)*csgn(I*x^3/(-x^2+ln(x)-x)^2)-Pi*csgn(I*x^3)*csgn(I*x^3/(-x^2+ln(x)-x)^2)^2-Pi*csg
n(I/(-x^2+ln(x)-x)^2)*csgn(I*x^3/(-x^2+ln(x)-x)^2)^2-Pi*csgn(I*(-x^2+ln(x)-x))^2*csgn(I*(-x^2+ln(x)-x)^2)-2*Pi
*csgn(I*(-x^2+ln(x)-x))*csgn(I*(-x^2+ln(x)-x)^2)^2-Pi*csgn(I*(-x^2+ln(x)-x)^2)^3+Pi*csgn(I*x^3/(-x^2+ln(x)-x)^
2)^3+4*I*ln(2)+6*I*ln(x)))
________________________________________________________________________________________
maxima [A] time = 0.48, size = 22, normalized size = 1.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*log(x)+x^2-x-2)/(x*log(x)-x^3-x^2)/log(4*x^3/(log(x)^2+(-2*x^2-2*x)*log(x)+x^4+2*x^3+x^2)),x, alg
orithm="maxima")
[Out]
log(-log(2) + log(-x^2 - x + log(x)) - 3/2*log(x))
________________________________________________________________________________________
mupad [B] time = 5.29, size = 38, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x - 3*log(x) - x^2 + 2)/(log((4*x^3)/(log(x)^2 - log(x)*(2*x + 2*x^2) + x^2 + 2*x^3 + x^4))*(x^2 - x*log(
x) + x^3)),x)
[Out]
log(log((4*x^3)/(log(x)^2 - log(x)*(2*x + 2*x^2) + x^2 + 2*x^3 + x^4)))
________________________________________________________________________________________
sympy [B] time = 0.64, size = 37, normalized size = 1.95
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((3*ln(x)+x**2-x-2)/(x*ln(x)-x**3-x**2)/ln(4*x**3/(ln(x)**2+(-2*x**2-2*x)*ln(x)+x**4+2*x**3+x**2)),x)
[Out]
log(log(4*x**3/(x**4 + 2*x**3 + x**2 + (-2*x**2 - 2*x)*log(x) + log(x)**2)))
________________________________________________________________________________________