3.69.92 e1e2(5010x)+ex(102x)+(5e1e2x+ex(4x+x2))log(x)5xlog3(x)dx

Optimal. Leaf size=24 (e1e2+ex5)(5x)log2(x)

________________________________________________________________________________________

Rubi [F]  time = 1.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e1e2(5010x)+ex(102x)+(5e1e2x+ex(4x+x2))log(x)5xlog3(x)dx

Verification is not applicable to the result.

[In]

Int[(E^E^(-2)*(50 - 10*x) + E^x*(10 - 2*x) + (5*E^E^(-2)*x + E^x*(-4*x + x^2))*Log[x])/(5*x*Log[x]^3),x]

[Out]

(-5*E^E^(-2))/Log[x]^2 + (E^E^(-2)*x)/Log[x]^2 - (2*Defer[Int][E^x/Log[x]^3, x])/5 + 2*Defer[Int][E^x/(x*Log[x
]^3), x] - (4*Defer[Int][E^x/Log[x]^2, x])/5 + Defer[Int][(E^x*x)/Log[x]^2, x]/5

Rubi steps

integral=15e1e2(5010x)+ex(102x)+(5e1e2x+ex(4x+x2))log(x)xlog3(x)dx=15(5e1e2(102x+xlog(x))xlog3(x)+ex(102x4xlog(x)+x2log(x))xlog3(x))dx=15ex(102x4xlog(x)+x2log(x))xlog3(x)dx+e1e2102x+xlog(x)xlog3(x)dx=15(2ex(5+x)xlog3(x)+ex(4+x)log2(x))dx+e1e2(2(5+x)xlog3(x)+1log2(x))dx=15ex(4+x)log2(x)dx25ex(5+x)xlog3(x)dx+e1e21log2(x)dx(2e1e2)5+xxlog3(x)dx=e1e2xlog(x)+15(4exlog2(x)+exxlog2(x))dx25(exlog3(x)5exxlog3(x))dx+e1e21log(x)dx(2e1e2)(1log3(x)5xlog3(x))dx=e1e2xlog(x)+e1e2li(x)+15exxlog2(x)dx25exlog3(x)dx45exlog2(x)dx+2exxlog3(x)dx(2e1e2)1log3(x)dx+(10e1e2)1xlog3(x)dx=e1e2xlog2(x)e1e2xlog(x)+e1e2li(x)+15exxlog2(x)dx25exlog3(x)dx45exlog2(x)dx+2exxlog3(x)dxe1e21log2(x)dx+(10e1e2)Subst(1x3dx,x,log(x))=5e1e2log2(x)+e1e2xlog2(x)+e1e2li(x)+15exxlog2(x)dx25exlog3(x)dx45exlog2(x)dx+2exxlog3(x)dxe1e21log(x)dx=5e1e2log2(x)+e1e2xlog2(x)+15exxlog2(x)dx25exlog3(x)dx45exlog2(x)dx+2exxlog3(x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.22, size = 22, normalized size = 0.92 (5e1e2+ex)(5+x)5log2(x)

Antiderivative was successfully verified.

[In]

Integrate[(E^E^(-2)*(50 - 10*x) + E^x*(10 - 2*x) + (5*E^E^(-2)*x + E^x*(-4*x + x^2))*Log[x])/(5*x*Log[x]^3),x]

[Out]

((5*E^E^(-2) + E^x)*(-5 + x))/(5*Log[x]^2)

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 21, normalized size = 0.88 (x5)ex+5(x5)e(e(2))5log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((x^2-4*x)*exp(x)+5*x*exp(1/exp(2)))*log(x)+(-2*x+10)*exp(x)+(-10*x+50)*exp(1/exp(2)))/x/log(x)
^3,x, algorithm="fricas")

[Out]

1/5*((x - 5)*e^x + 5*(x - 5)*e^(e^(-2)))/log(x)^2

________________________________________________________________________________________

giac [A]  time = 0.14, size = 26, normalized size = 1.08 xex+5xe(e(2))5ex25e(e(2))5log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((x^2-4*x)*exp(x)+5*x*exp(1/exp(2)))*log(x)+(-2*x+10)*exp(x)+(-10*x+50)*exp(1/exp(2)))/x/log(x)
^3,x, algorithm="giac")

[Out]

1/5*(x*e^x + 5*x*e^(e^(-2)) - 5*e^x - 25*e^(e^(-2)))/log(x)^2

________________________________________________________________________________________

maple [A]  time = 0.03, size = 27, normalized size = 1.12




method result size



risch 5xee2+exx25ee25ex5ln(x)2 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*(((x^2-4*x)*exp(x)+5*x*exp(1/exp(2)))*ln(x)+(-2*x+10)*exp(x)+(-10*x+50)*exp(1/exp(2)))/x/ln(x)^3,x,met
hod=_RETURNVERBOSE)

[Out]

1/5*(5*x*exp(exp(-2))+exp(x)*x-25*exp(exp(-2))-5*exp(x))/ln(x)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 2e(e(2))Γ(2,log(x))+e(e(2))1log(x)dx5xe(e(2))log(x)(x5)ex5log(x)25e(e(2))log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((x^2-4*x)*exp(x)+5*x*exp(1/exp(2)))*log(x)+(-2*x+10)*exp(x)+(-10*x+50)*exp(1/exp(2)))/x/log(x)
^3,x, algorithm="maxima")

[Out]

2*e^(e^(-2))*gamma(-2, -log(x)) + e^(e^(-2))*integrate(1/log(x), x) - 1/5*(5*x*e^(e^(-2))*log(x) - (x - 5)*e^x
)/log(x)^2 - 5*e^(e^(-2))/log(x)^2

________________________________________________________________________________________

mupad [B]  time = 4.24, size = 17, normalized size = 0.71 (5ee2+ex)(x5)5ln(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-((exp(exp(-2))*(10*x - 50))/5 + (exp(x)*(2*x - 10))/5 - (log(x)*(5*x*exp(exp(-2)) - exp(x)*(4*x - x^2)))/
5)/(x*log(x)^3),x)

[Out]

((5*exp(exp(-2)) + exp(x))*(x - 5))/(5*log(x)^2)

________________________________________________________________________________________

sympy [A]  time = 0.28, size = 34, normalized size = 1.42 (x5)ex5log(x)2+xee25ee2log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(((x**2-4*x)*exp(x)+5*x*exp(1/exp(2)))*ln(x)+(-2*x+10)*exp(x)+(-10*x+50)*exp(1/exp(2)))/x/ln(x)*
*3,x)

[Out]

(x - 5)*exp(x)/(5*log(x)**2) + (x*exp(exp(-2)) - 5*exp(exp(-2)))/log(x)**2

________________________________________________________________________________________