Optimal. Leaf size=24 \[ -\frac {\left (e^{\frac {1}{e^2}}+\frac {e^x}{5}\right ) (5-x)}{\log ^2(x)} \]
________________________________________________________________________________________
Rubi [F] time = 1.61, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {1}{e^2}} (50-10 x)+e^x (10-2 x)+\left (5 e^{\frac {1}{e^2}} x+e^x \left (-4 x+x^2\right )\right ) \log (x)}{5 x \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{\frac {1}{e^2}} (50-10 x)+e^x (10-2 x)+\left (5 e^{\frac {1}{e^2}} x+e^x \left (-4 x+x^2\right )\right ) \log (x)}{x \log ^3(x)} \, dx\\ &=\frac {1}{5} \int \left (\frac {5 e^{\frac {1}{e^2}} (10-2 x+x \log (x))}{x \log ^3(x)}+\frac {e^x \left (10-2 x-4 x \log (x)+x^2 \log (x)\right )}{x \log ^3(x)}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^x \left (10-2 x-4 x \log (x)+x^2 \log (x)\right )}{x \log ^3(x)} \, dx+e^{\frac {1}{e^2}} \int \frac {10-2 x+x \log (x)}{x \log ^3(x)} \, dx\\ &=\frac {1}{5} \int \left (-\frac {2 e^x (-5+x)}{x \log ^3(x)}+\frac {e^x (-4+x)}{\log ^2(x)}\right ) \, dx+e^{\frac {1}{e^2}} \int \left (-\frac {2 (-5+x)}{x \log ^3(x)}+\frac {1}{\log ^2(x)}\right ) \, dx\\ &=\frac {1}{5} \int \frac {e^x (-4+x)}{\log ^2(x)} \, dx-\frac {2}{5} \int \frac {e^x (-5+x)}{x \log ^3(x)} \, dx+e^{\frac {1}{e^2}} \int \frac {1}{\log ^2(x)} \, dx-\left (2 e^{\frac {1}{e^2}}\right ) \int \frac {-5+x}{x \log ^3(x)} \, dx\\ &=-\frac {e^{\frac {1}{e^2}} x}{\log (x)}+\frac {1}{5} \int \left (-\frac {4 e^x}{\log ^2(x)}+\frac {e^x x}{\log ^2(x)}\right ) \, dx-\frac {2}{5} \int \left (\frac {e^x}{\log ^3(x)}-\frac {5 e^x}{x \log ^3(x)}\right ) \, dx+e^{\frac {1}{e^2}} \int \frac {1}{\log (x)} \, dx-\left (2 e^{\frac {1}{e^2}}\right ) \int \left (\frac {1}{\log ^3(x)}-\frac {5}{x \log ^3(x)}\right ) \, dx\\ &=-\frac {e^{\frac {1}{e^2}} x}{\log (x)}+e^{\frac {1}{e^2}} \text {li}(x)+\frac {1}{5} \int \frac {e^x x}{\log ^2(x)} \, dx-\frac {2}{5} \int \frac {e^x}{\log ^3(x)} \, dx-\frac {4}{5} \int \frac {e^x}{\log ^2(x)} \, dx+2 \int \frac {e^x}{x \log ^3(x)} \, dx-\left (2 e^{\frac {1}{e^2}}\right ) \int \frac {1}{\log ^3(x)} \, dx+\left (10 e^{\frac {1}{e^2}}\right ) \int \frac {1}{x \log ^3(x)} \, dx\\ &=\frac {e^{\frac {1}{e^2}} x}{\log ^2(x)}-\frac {e^{\frac {1}{e^2}} x}{\log (x)}+e^{\frac {1}{e^2}} \text {li}(x)+\frac {1}{5} \int \frac {e^x x}{\log ^2(x)} \, dx-\frac {2}{5} \int \frac {e^x}{\log ^3(x)} \, dx-\frac {4}{5} \int \frac {e^x}{\log ^2(x)} \, dx+2 \int \frac {e^x}{x \log ^3(x)} \, dx-e^{\frac {1}{e^2}} \int \frac {1}{\log ^2(x)} \, dx+\left (10 e^{\frac {1}{e^2}}\right ) \operatorname {Subst}\left (\int \frac {1}{x^3} \, dx,x,\log (x)\right )\\ &=-\frac {5 e^{\frac {1}{e^2}}}{\log ^2(x)}+\frac {e^{\frac {1}{e^2}} x}{\log ^2(x)}+e^{\frac {1}{e^2}} \text {li}(x)+\frac {1}{5} \int \frac {e^x x}{\log ^2(x)} \, dx-\frac {2}{5} \int \frac {e^x}{\log ^3(x)} \, dx-\frac {4}{5} \int \frac {e^x}{\log ^2(x)} \, dx+2 \int \frac {e^x}{x \log ^3(x)} \, dx-e^{\frac {1}{e^2}} \int \frac {1}{\log (x)} \, dx\\ &=-\frac {5 e^{\frac {1}{e^2}}}{\log ^2(x)}+\frac {e^{\frac {1}{e^2}} x}{\log ^2(x)}+\frac {1}{5} \int \frac {e^x x}{\log ^2(x)} \, dx-\frac {2}{5} \int \frac {e^x}{\log ^3(x)} \, dx-\frac {4}{5} \int \frac {e^x}{\log ^2(x)} \, dx+2 \int \frac {e^x}{x \log ^3(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 22, normalized size = 0.92 \begin {gather*} \frac {\left (5 e^{\frac {1}{e^2}}+e^x\right ) (-5+x)}{5 \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 21, normalized size = 0.88 \begin {gather*} \frac {{\left (x - 5\right )} e^{x} + 5 \, {\left (x - 5\right )} e^{\left (e^{\left (-2\right )}\right )}}{5 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 26, normalized size = 1.08 \begin {gather*} \frac {x e^{x} + 5 \, x e^{\left (e^{\left (-2\right )}\right )} - 5 \, e^{x} - 25 \, e^{\left (e^{\left (-2\right )}\right )}}{5 \, \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 1.12
method | result | size |
risch | \(\frac {5 x \,{\mathrm e}^{{\mathrm e}^{-2}}+{\mathrm e}^{x} x -25 \,{\mathrm e}^{{\mathrm e}^{-2}}-5 \,{\mathrm e}^{x}}{5 \ln \relax (x )^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, e^{\left (e^{\left (-2\right )}\right )} \Gamma \left (-2, -\log \relax (x)\right ) + e^{\left (e^{\left (-2\right )}\right )} \int \frac {1}{\log \relax (x)}\,{d x} - \frac {5 \, x e^{\left (e^{\left (-2\right )}\right )} \log \relax (x) - {\left (x - 5\right )} e^{x}}{5 \, \log \relax (x)^{2}} - \frac {5 \, e^{\left (e^{\left (-2\right )}\right )}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 17, normalized size = 0.71 \begin {gather*} \frac {\left (5\,{\mathrm {e}}^{{\mathrm {e}}^{-2}}+{\mathrm {e}}^x\right )\,\left (x-5\right )}{5\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 34, normalized size = 1.42 \begin {gather*} \frac {\left (x - 5\right ) e^{x}}{5 \log {\relax (x )}^{2}} + \frac {x e^{e^{-2}} - 5 e^{e^{-2}}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________