3.69.97 e67837+6x3x2768x(678373x2)3072x2dx

Optimal. Leaf size=25 14e26531256(1x)2x

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 23, normalized size of antiderivative = 0.92, number of steps used = 2, number of rules used = 2, integrand size = 33, number of rulesintegrand size = 0.061, Rules used = {12, 6706} 14e3x2+6x+67837768x

Antiderivative was successfully verified.

[In]

Int[(E^((67837 + 6*x - 3*x^2)/(768*x))*(-67837 - 3*x^2))/(3072*x^2),x]

[Out]

E^((67837 + 6*x - 3*x^2)/(768*x))/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=e67837+6x3x2768x(678373x2)x2dx3072=14e67837+6x3x2768x

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 22, normalized size = 0.88 14e1128+67837768xx256

Antiderivative was successfully verified.

[In]

Integrate[(E^((67837 + 6*x - 3*x^2)/(768*x))*(-67837 - 3*x^2))/(3072*x^2),x]

[Out]

E^(1/128 + 67837/(768*x) - x/256)/4

________________________________________________________________________________________

fricas [A]  time = 1.12, size = 18, normalized size = 0.72 14e(3x26x67837768x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3072*(-3*x^2-67837)*exp(1/768*(-3*x^2+6*x+67837)/x)/x^2,x, algorithm="fricas")

[Out]

1/4*e^(-1/768*(3*x^2 - 6*x - 67837)/x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 Exception raised: TypeError

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3072*(-3*x^2-67837)*exp(1/768*(-3*x^2+6*x+67837)/x)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Polynomial exponent overflow. Error: Bad Argument Value

________________________________________________________________________________________

maple [A]  time = 0.04, size = 19, normalized size = 0.76




method result size



gosper e3x26x67837768x4 19
norman e3x2+6x+67837768x4 19
risch e3x26x67837768x4 19



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3072*(-3*x^2-67837)*exp(1/768*(-3*x^2+6*x+67837)/x)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/4*exp(-1/768*(3*x^2-6*x-67837)/x)

________________________________________________________________________________________

maxima [A]  time = 2.19, size = 13, normalized size = 0.52 14e(1256x+67837768x+1128)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3072*(-3*x^2-67837)*exp(1/768*(-3*x^2+6*x+67837)/x)/x^2,x, algorithm="maxima")

[Out]

1/4*e^(-1/256*x + 67837/768/x + 1/128)

________________________________________________________________________________________

mupad [B]  time = 4.14, size = 13, normalized size = 0.52 e67837768xx256+11284

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((x/128 - x^2/256 + 67837/768)/x)*(3*x^2 + 67837))/(3072*x^2),x)

[Out]

exp(67837/(768*x) - x/256 + 1/128)/4

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 15, normalized size = 0.60 ex2256+x128+67837768x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3072*(-3*x**2-67837)*exp(1/768*(-3*x**2+6*x+67837)/x)/x**2,x)

[Out]

exp((-x**2/256 + x/128 + 67837/768)/x)/4

________________________________________________________________________________________