3.69.98
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [A] time = 1.72, antiderivative size = 45, normalized size of antiderivative = 1.73,
number of steps used = 15, number of rules used = 8, integrand size = 68, = 0.118, Rules used
= {6741, 6742, 6688, 2199, 2194, 2178, 2176, 2554}
Antiderivative was successfully verified.
[In]
Int[(18 + E^x*(-8 - 4*x) - 6*x - 6*Log[3/2] + E^x*(36 - 4*x^2 - (12 + 4*x)*Log[3/2])*Log[3 - x - Log[3/2]])/(9
- 3*x - 3*Log[3/2]),x]
[Out]
2*x - (4*E^x*Log[3 - x - Log[3/2]])/3 + (4*E^x*(3 + x)*Log[3 - x - Log[3/2]])/3
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 2554
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 2.84, size = 28, normalized size = 1.08
Antiderivative was successfully verified.
[In]
Integrate[(18 + E^x*(-8 - 4*x) - 6*x - 6*Log[3/2] + E^x*(36 - 4*x^2 - (12 + 4*x)*Log[3/2])*Log[3 - x - Log[3/2
]])/(9 - 3*x - 3*Log[3/2]),x]
[Out]
(2*(3*x + 2*E^x*(2 + x)*Log[3 - x - Log[3/2]]))/3
________________________________________________________________________________________
fricas [A] time = 0.59, size = 19, normalized size = 0.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((4*x+12)*log(2/3)-4*x^2+36)*exp(x)*log(log(2/3)+3-x)+(-4*x-8)*exp(x)+6*log(2/3)-6*x+18)/(3*log(2/3
)-3*x+9),x, algorithm="fricas")
[Out]
4/3*(x + 2)*e^x*log(-x + log(2/3) + 3) + 2*x
________________________________________________________________________________________
giac [C] time = 0.27, size = 128, normalized size = 4.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((4*x+12)*log(2/3)-4*x^2+36)*exp(x)*log(log(2/3)+3-x)+(-4*x-8)*exp(x)+6*log(2/3)-6*x+18)/(3*log(2/3
)-3*x+9),x, algorithm="giac")
[Out]
-4/3*Ei(x + log(3) - log(2) - 3)*e^(-log(3) + log(2) + 3)*log(3) + 4/3*Ei(x + log(3) - log(2) - 3)*e^(-log(3)
+ log(2) + 3)*log(2) - 4/3*Ei(x - log(2/3) - 3)*e^(log(2/3) + 3)*log(2/3) + 4/3*x*e^x*log(-x + log(2/3) + 3) +
20/3*Ei(x + log(3) - log(2) - 3)*e^(-log(3) + log(2) + 3) - 20/3*Ei(x - log(2/3) - 3)*e^(log(2/3) + 3) + 8/3*
e^x*log(-x + log(2/3) + 3) + 2*x
________________________________________________________________________________________
maple [A] time = 0.19, size = 24, normalized size = 0.92
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((4*x+12)*ln(2/3)-4*x^2+36)*exp(x)*ln(ln(2/3)+3-x)+(-4*x-8)*exp(x)+6*ln(2/3)-6*x+18)/(3*ln(2/3)-3*x+9),x,
method=_RETURNVERBOSE)
[Out]
4/3*(2+x)*exp(x)*ln(ln(2)-ln(3)+3-x)+2*x
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((4*x+12)*log(2/3)-4*x^2+36)*exp(x)*log(log(2/3)+3-x)+(-4*x-8)*exp(x)+6*log(2/3)-6*x+18)/(3*log(2/3
)-3*x+9),x, algorithm="maxima")
[Out]
4/3*(x + 2)*e^x*log(-x - log(3) + log(2) + 3) - 16/9*e^3*exp_integral_e(1, -x + log(2/3) + 3) + 2*(log(2/3) +
3)*log(x - log(2/3) - 3) - 2*log(2/3)*log(x - log(2/3) - 3) + 2*x - 8/3*integrate(e^x/(x + log(3) - log(2) - 3
), x) - 6*log(x - log(2/3) - 3)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((6*log(2/3) - 6*x - exp(x)*(4*x + 8) + log(log(2/3) - x + 3)*exp(x)*(log(2/3)*(4*x + 12) - 4*x^2 + 36) + 1
8)/(3*log(2/3) - 3*x + 9),x)
[Out]
int((6*log(2/3) - 6*x - exp(x)*(4*x + 8) + log(log(2/3) - x + 3)*exp(x)*(log(2/3)*(4*x + 12) - 4*x^2 + 36) + 1
8)/(3*log(2/3) - 3*x + 9), x)
________________________________________________________________________________________
sympy [A] time = 0.77, size = 32, normalized size = 1.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((4*x+12)*ln(2/3)-4*x**2+36)*exp(x)*ln(ln(2/3)+3-x)+(-4*x-8)*exp(x)+6*ln(2/3)-6*x+18)/(3*ln(2/3)-3*
x+9),x)
[Out]
2*x + (4*x*log(-x + log(2/3) + 3) + 8*log(-x + log(2/3) + 3))*exp(x)/3
________________________________________________________________________________________