3.69.98 18+ex(84x)6x6log(32)+ex(364x2(12+4x)log(32))log(3xlog(32))93x3log(32)dx

Optimal. Leaf size=26 2x+43ex(2+x)log(3xlog(32))

________________________________________________________________________________________

Rubi [A]  time = 1.72, antiderivative size = 45, normalized size of antiderivative = 1.73, number of steps used = 15, number of rules used = 8, integrand size = 68, number of rulesintegrand size = 0.118, Rules used = {6741, 6742, 6688, 2199, 2194, 2178, 2176, 2554} 2x43exlog(x+3log(32))+43ex(x+3)log(x+3log(32))

Antiderivative was successfully verified.

[In]

Int[(18 + E^x*(-8 - 4*x) - 6*x - 6*Log[3/2] + E^x*(36 - 4*x^2 - (12 + 4*x)*Log[3/2])*Log[3 - x - Log[3/2]])/(9
 - 3*x - 3*Log[3/2]),x]

[Out]

2*x - (4*E^x*Log[3 - x - Log[3/2]])/3 + (4*E^x*(3 + x)*Log[3 - x - Log[3/2]])/3

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 2554

Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Dist[Log[u], w, x] - Int[SimplifyIntegrand[(w*D[u, x]
)/u, x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]

Rule 6688

Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=ex(84x)6x+18(113log(32))+ex(364x2(12+4x)log(32))log(3xlog(32))93x3log(32)dx=(2+4ex(2xx2log(3xlog(32))+9(113log(32))log(3xlog(32))xlog(32)log(3xlog(32)))3(3xlog(32)))dx=2x+43ex(2xx2log(3xlog(32))+9(113log(32))log(3xlog(32))xlog(32)log(3xlog(32)))3xlog(32)dx=2x+43ex(2x(3+x)(3+x+log(32))log(3xlog(32)))3xlog(32)dx=2x+43(ex(2+x)3+x+log(32)+ex(3+x)log(3xlog(32)))dx=2x+43ex(2+x)3+x+log(32)dx+43ex(3+x)log(3xlog(32))dx=2x43exlog(3xlog(32))+43ex(3+x)log(3xlog(32))43ex(2x)3xlog(32)dx+43(ex+ex(5log(32))3+x+log(32))dx=2x43exlog(3xlog(32))+43ex(3+x)log(3xlog(32))+4exdx343(ex+ex(5log(32))3+x+log(32))dx+13(4(5log(32)))ex3+x+log(32)dx=4ex3+2x+89e3Ei(3+x+log(32))(5log(32))43exlog(3xlog(32))+43ex(3+x)log(3xlog(32))4exdx313(4(5log(32)))ex3+x+log(32)dx=2x43exlog(3xlog(32))+43ex(3+x)log(3xlog(32))

________________________________________________________________________________________

Mathematica [A]  time = 2.84, size = 28, normalized size = 1.08 23(3x+2ex(2+x)log(3xlog(32)))

Antiderivative was successfully verified.

[In]

Integrate[(18 + E^x*(-8 - 4*x) - 6*x - 6*Log[3/2] + E^x*(36 - 4*x^2 - (12 + 4*x)*Log[3/2])*Log[3 - x - Log[3/2
]])/(9 - 3*x - 3*Log[3/2]),x]

[Out]

(2*(3*x + 2*E^x*(2 + x)*Log[3 - x - Log[3/2]]))/3

________________________________________________________________________________________

fricas [A]  time = 0.59, size = 19, normalized size = 0.73 43(x+2)exlog(x+log(23)+3)+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+12)*log(2/3)-4*x^2+36)*exp(x)*log(log(2/3)+3-x)+(-4*x-8)*exp(x)+6*log(2/3)-6*x+18)/(3*log(2/3
)-3*x+9),x, algorithm="fricas")

[Out]

4/3*(x + 2)*e^x*log(-x + log(2/3) + 3) + 2*x

________________________________________________________________________________________

giac [C]  time = 0.27, size = 128, normalized size = 4.92 43Ei(x+log(3)log(2)3)e(log(3)+log(2)+3)log(3)+43Ei(x+log(3)log(2)3)e(log(3)+log(2)+3)log(2)43Ei(xlog(23)3)e(log(23)+3)log(23)+43xexlog(x+log(23)+3)+203Ei(x+log(3)log(2)3)e(log(3)+log(2)+3)203Ei(xlog(23)3)e(log(23)+3)+83exlog(x+log(23)+3)+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+12)*log(2/3)-4*x^2+36)*exp(x)*log(log(2/3)+3-x)+(-4*x-8)*exp(x)+6*log(2/3)-6*x+18)/(3*log(2/3
)-3*x+9),x, algorithm="giac")

[Out]

-4/3*Ei(x + log(3) - log(2) - 3)*e^(-log(3) + log(2) + 3)*log(3) + 4/3*Ei(x + log(3) - log(2) - 3)*e^(-log(3)
+ log(2) + 3)*log(2) - 4/3*Ei(x - log(2/3) - 3)*e^(log(2/3) + 3)*log(2/3) + 4/3*x*e^x*log(-x + log(2/3) + 3) +
 20/3*Ei(x + log(3) - log(2) - 3)*e^(-log(3) + log(2) + 3) - 20/3*Ei(x - log(2/3) - 3)*e^(log(2/3) + 3) + 8/3*
e^x*log(-x + log(2/3) + 3) + 2*x

________________________________________________________________________________________

maple [A]  time = 0.19, size = 24, normalized size = 0.92




method result size



risch 4(2+x)exln(ln(2)ln(3)+3x)3+2x 24
default 2x+8exln(ln(23)+3x)3+4exxln(ln(23)+3x)3 30
norman 2x+8exln(ln(23)+3x)3+4exxln(ln(23)+3x)3 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((4*x+12)*ln(2/3)-4*x^2+36)*exp(x)*ln(ln(2/3)+3-x)+(-4*x-8)*exp(x)+6*ln(2/3)-6*x+18)/(3*ln(2/3)-3*x+9),x,
method=_RETURNVERBOSE)

[Out]

4/3*(2+x)*exp(x)*ln(ln(2)-ln(3)+3-x)+2*x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 43(x+2)exlog(xlog(3)+log(2)+3)169e3E1(x+log(23)+3)+2(log(23)+3)log(xlog(23)3)2log(23)log(xlog(23)3)+2x83exx+log(3)log(2)3dx6log(xlog(23)3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+12)*log(2/3)-4*x^2+36)*exp(x)*log(log(2/3)+3-x)+(-4*x-8)*exp(x)+6*log(2/3)-6*x+18)/(3*log(2/3
)-3*x+9),x, algorithm="maxima")

[Out]

4/3*(x + 2)*e^x*log(-x - log(3) + log(2) + 3) - 16/9*e^3*exp_integral_e(1, -x + log(2/3) + 3) + 2*(log(2/3) +
3)*log(x - log(2/3) - 3) - 2*log(2/3)*log(x - log(2/3) - 3) + 2*x - 8/3*integrate(e^x/(x + log(3) - log(2) - 3
), x) - 6*log(x - log(2/3) - 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 6ln(23)6xex(4x+8)+ln(ln(23)x+3)ex(ln(23)(4x+12)4x2+36)+183ln(23)3x+9dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((6*log(2/3) - 6*x - exp(x)*(4*x + 8) + log(log(2/3) - x + 3)*exp(x)*(log(2/3)*(4*x + 12) - 4*x^2 + 36) + 1
8)/(3*log(2/3) - 3*x + 9),x)

[Out]

int((6*log(2/3) - 6*x - exp(x)*(4*x + 8) + log(log(2/3) - x + 3)*exp(x)*(log(2/3)*(4*x + 12) - 4*x^2 + 36) + 1
8)/(3*log(2/3) - 3*x + 9), x)

________________________________________________________________________________________

sympy [A]  time = 0.77, size = 32, normalized size = 1.23 2x+(4xlog(x+log(23)+3)+8log(x+log(23)+3))ex3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((4*x+12)*ln(2/3)-4*x**2+36)*exp(x)*ln(ln(2/3)+3-x)+(-4*x-8)*exp(x)+6*ln(2/3)-6*x+18)/(3*ln(2/3)-3*
x+9),x)

[Out]

2*x + (4*x*log(-x + log(2/3) + 3) + 8*log(-x + log(2/3) + 3))*exp(x)/3

________________________________________________________________________________________