Optimal. Leaf size=26 \[ 2 x+\frac {4}{3} e^x (2+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.72, antiderivative size = 45, normalized size of antiderivative = 1.73, number of steps used = 15, number of rules used = 8, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6741, 6742, 6688, 2199, 2194, 2178, 2176, 2554} \begin {gather*} 2 x-\frac {4}{3} e^x \log \left (-x+3-\log \left (\frac {3}{2}\right )\right )+\frac {4}{3} e^x (x+3) \log \left (-x+3-\log \left (\frac {3}{2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6688
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x (-8-4 x)-6 x+18 \left (1-\frac {1}{3} \log \left (\frac {3}{2}\right )\right )+e^x \left (36-4 x^2-(12+4 x) \log \left (\frac {3}{2}\right )\right ) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )}{9-3 x-3 \log \left (\frac {3}{2}\right )} \, dx\\ &=\int \left (2+\frac {4 e^x \left (-2-x-x^2 \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+9 \left (1-\frac {1}{3} \log \left (\frac {3}{2}\right )\right ) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )-x \log \left (\frac {3}{2}\right ) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )\right )}{3 \left (3-x-\log \left (\frac {3}{2}\right )\right )}\right ) \, dx\\ &=2 x+\frac {4}{3} \int \frac {e^x \left (-2-x-x^2 \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+9 \left (1-\frac {1}{3} \log \left (\frac {3}{2}\right )\right ) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )-x \log \left (\frac {3}{2}\right ) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )\right )}{3-x-\log \left (\frac {3}{2}\right )} \, dx\\ &=2 x+\frac {4}{3} \int \frac {e^x \left (-2-x-(3+x) \left (-3+x+\log \left (\frac {3}{2}\right )\right ) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )\right )}{3-x-\log \left (\frac {3}{2}\right )} \, dx\\ &=2 x+\frac {4}{3} \int \left (\frac {e^x (2+x)}{-3+x+\log \left (\frac {3}{2}\right )}+e^x (3+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )\right ) \, dx\\ &=2 x+\frac {4}{3} \int \frac {e^x (2+x)}{-3+x+\log \left (\frac {3}{2}\right )} \, dx+\frac {4}{3} \int e^x (3+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right ) \, dx\\ &=2 x-\frac {4}{3} e^x \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+\frac {4}{3} e^x (3+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )-\frac {4}{3} \int \frac {e^x (-2-x)}{3-x-\log \left (\frac {3}{2}\right )} \, dx+\frac {4}{3} \int \left (e^x+\frac {e^x \left (5-\log \left (\frac {3}{2}\right )\right )}{-3+x+\log \left (\frac {3}{2}\right )}\right ) \, dx\\ &=2 x-\frac {4}{3} e^x \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+\frac {4}{3} e^x (3+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+\frac {4 \int e^x \, dx}{3}-\frac {4}{3} \int \left (e^x+\frac {e^x \left (5-\log \left (\frac {3}{2}\right )\right )}{-3+x+\log \left (\frac {3}{2}\right )}\right ) \, dx+\frac {1}{3} \left (4 \left (5-\log \left (\frac {3}{2}\right )\right )\right ) \int \frac {e^x}{-3+x+\log \left (\frac {3}{2}\right )} \, dx\\ &=\frac {4 e^x}{3}+2 x+\frac {8}{9} e^3 \text {Ei}\left (-3+x+\log \left (\frac {3}{2}\right )\right ) \left (5-\log \left (\frac {3}{2}\right )\right )-\frac {4}{3} e^x \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+\frac {4}{3} e^x (3+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )-\frac {4 \int e^x \, dx}{3}-\frac {1}{3} \left (4 \left (5-\log \left (\frac {3}{2}\right )\right )\right ) \int \frac {e^x}{-3+x+\log \left (\frac {3}{2}\right )} \, dx\\ &=2 x-\frac {4}{3} e^x \log \left (3-x-\log \left (\frac {3}{2}\right )\right )+\frac {4}{3} e^x (3+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.84, size = 28, normalized size = 1.08 \begin {gather*} \frac {2}{3} \left (3 x+2 e^x (2+x) \log \left (3-x-\log \left (\frac {3}{2}\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 19, normalized size = 0.73 \begin {gather*} \frac {4}{3} \, {\left (x + 2\right )} e^{x} \log \left (-x + \log \left (\frac {2}{3}\right ) + 3\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.27, size = 128, normalized size = 4.92 \begin {gather*} -\frac {4}{3} \, {\rm Ei}\left (x + \log \relax (3) - \log \relax (2) - 3\right ) e^{\left (-\log \relax (3) + \log \relax (2) + 3\right )} \log \relax (3) + \frac {4}{3} \, {\rm Ei}\left (x + \log \relax (3) - \log \relax (2) - 3\right ) e^{\left (-\log \relax (3) + \log \relax (2) + 3\right )} \log \relax (2) - \frac {4}{3} \, {\rm Ei}\left (x - \log \left (\frac {2}{3}\right ) - 3\right ) e^{\left (\log \left (\frac {2}{3}\right ) + 3\right )} \log \left (\frac {2}{3}\right ) + \frac {4}{3} \, x e^{x} \log \left (-x + \log \left (\frac {2}{3}\right ) + 3\right ) + \frac {20}{3} \, {\rm Ei}\left (x + \log \relax (3) - \log \relax (2) - 3\right ) e^{\left (-\log \relax (3) + \log \relax (2) + 3\right )} - \frac {20}{3} \, {\rm Ei}\left (x - \log \left (\frac {2}{3}\right ) - 3\right ) e^{\left (\log \left (\frac {2}{3}\right ) + 3\right )} + \frac {8}{3} \, e^{x} \log \left (-x + \log \left (\frac {2}{3}\right ) + 3\right ) + 2 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.19, size = 24, normalized size = 0.92
method | result | size |
risch | \(\frac {4 \left (2+x \right ) {\mathrm e}^{x} \ln \left (\ln \relax (2)-\ln \relax (3)+3-x \right )}{3}+2 x\) | \(24\) |
default | \(2 x +\frac {8 \,{\mathrm e}^{x} \ln \left (\ln \left (\frac {2}{3}\right )+3-x \right )}{3}+\frac {4 \,{\mathrm e}^{x} x \ln \left (\ln \left (\frac {2}{3}\right )+3-x \right )}{3}\) | \(30\) |
norman | \(2 x +\frac {8 \,{\mathrm e}^{x} \ln \left (\ln \left (\frac {2}{3}\right )+3-x \right )}{3}+\frac {4 \,{\mathrm e}^{x} x \ln \left (\ln \left (\frac {2}{3}\right )+3-x \right )}{3}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4}{3} \, {\left (x + 2\right )} e^{x} \log \left (-x - \log \relax (3) + \log \relax (2) + 3\right ) - \frac {16}{9} \, e^{3} E_{1}\left (-x + \log \left (\frac {2}{3}\right ) + 3\right ) + 2 \, {\left (\log \left (\frac {2}{3}\right ) + 3\right )} \log \left (x - \log \left (\frac {2}{3}\right ) - 3\right ) - 2 \, \log \left (\frac {2}{3}\right ) \log \left (x - \log \left (\frac {2}{3}\right ) - 3\right ) + 2 \, x - \frac {8}{3} \, \int \frac {e^{x}}{x + \log \relax (3) - \log \relax (2) - 3}\,{d x} - 6 \, \log \left (x - \log \left (\frac {2}{3}\right ) - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {6\,\ln \left (\frac {2}{3}\right )-6\,x-{\mathrm {e}}^x\,\left (4\,x+8\right )+\ln \left (\ln \left (\frac {2}{3}\right )-x+3\right )\,{\mathrm {e}}^x\,\left (\ln \left (\frac {2}{3}\right )\,\left (4\,x+12\right )-4\,x^2+36\right )+18}{3\,\ln \left (\frac {2}{3}\right )-3\,x+9} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 32, normalized size = 1.23 \begin {gather*} 2 x + \frac {\left (4 x \log {\left (- x + \log {\left (\frac {2}{3} \right )} + 3 \right )} + 8 \log {\left (- x + \log {\left (\frac {2}{3} \right )} + 3 \right )}\right ) e^{x}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________