Optimal. Leaf size=15 \[ 5 \left (-20-3 x+\log ^2(3+e x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 14, normalized size of antiderivative = 0.93, number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {6741, 12, 6742, 2390, 2301} \begin {gather*} 5 \log ^2(e x+3)-15 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2301
Rule 2390
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 (-9-3 e x+2 e \log (3+e x))}{3+e x} \, dx\\ &=5 \int \frac {-9-3 e x+2 e \log (3+e x)}{3+e x} \, dx\\ &=5 \int \left (-3+\frac {2 e \log (3+e x)}{3+e x}\right ) \, dx\\ &=-15 x+(10 e) \int \frac {\log (3+e x)}{3+e x} \, dx\\ &=-15 x+10 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,3+e x\right )\\ &=-15 x+5 \log ^2(3+e x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 1.07 \begin {gather*} -5 \left (3 x-\log ^2(3+e x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 15, normalized size = 1.00 \begin {gather*} 5 \, \log \left (x e + 3\right )^{2} - 15 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.44, size = 15, normalized size = 1.00 \begin {gather*} 5 \, \log \left (x e + 3\right )^{2} - 15 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 16, normalized size = 1.07
method | result | size |
norman | \(-15 x +5 \ln \left (x \,{\mathrm e}+3\right )^{2}\) | \(16\) |
risch | \(-15 x +5 \ln \left (x \,{\mathrm e}+3\right )^{2}\) | \(16\) |
derivativedivides | \(5 \,{\mathrm e}^{-1} \left ({\mathrm e} \ln \left (x \,{\mathrm e}+3\right )^{2}-3 x \,{\mathrm e}-9\right )\) | \(26\) |
default | \(5 \,{\mathrm e}^{-1} \left ({\mathrm e} \ln \left (x \,{\mathrm e}+3\right )^{2}-3 x \,{\mathrm e}-9\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.48, size = 43, normalized size = 2.87 \begin {gather*} -15 \, {\left (x e^{\left (-1\right )} - 3 \, e^{\left (-2\right )} \log \left (x e + 3\right )\right )} e - 45 \, e^{\left (-1\right )} \log \left (x e + 3\right ) + 5 \, \log \left (x e + 3\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 15, normalized size = 1.00 \begin {gather*} 5\,{\ln \left (x\,\mathrm {e}+3\right )}^2-15\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.93 \begin {gather*} - 15 x + 5 \log {\left (e x + 3 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________