Optimal. Leaf size=23 \[ x \left (e^3-e^{2 (16+x)}+x\right ) \left (4+e^2+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.10, antiderivative size = 133, normalized size of antiderivative = 5.78, number of steps used = 8, number of rules used = 5, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {6, 2187, 2176, 2194, 2554} \begin {gather*} \frac {1}{2} \left (9+2 e^2\right ) x^2-\frac {x^2}{2}+x^2 \log (x)+e^3 \left (5+e^2\right ) x-e^3 x+\frac {1}{2} e^{2 x+32}-\frac {1}{2} e^{2 x+32} \left (2 \left (4+e^2\right ) x+e^2+5\right )+\frac {1}{2} \left (4+e^2\right ) e^{2 x+32}+e^3 x \log (x)+\frac {1}{2} e^{2 x+32} \log (x)-\frac {1}{2} e^{2 x+32} (2 x+1) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2176
Rule 2187
Rule 2194
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^3 \left (5+e^2\right )+e^{32+2 x} \left (-5+e^2 (-1-2 x)-8 x\right )+\left (9+2 e^2\right ) x+\left (e^3+e^{32+2 x} (-1-2 x)+2 x\right ) \log (x)\right ) \, dx\\ &=e^3 \left (5+e^2\right ) x+\frac {1}{2} \left (9+2 e^2\right ) x^2+\int e^{32+2 x} \left (-5+e^2 (-1-2 x)-8 x\right ) \, dx+\int \left (e^3+e^{32+2 x} (-1-2 x)+2 x\right ) \log (x) \, dx\\ &=e^3 \left (5+e^2\right ) x+\frac {1}{2} \left (9+2 e^2\right ) x^2+\frac {1}{2} e^{32+2 x} \log (x)+e^3 x \log (x)+x^2 \log (x)-\frac {1}{2} e^{32+2 x} (1+2 x) \log (x)-\int \left (e^3-e^{32+2 x}+x\right ) \, dx+\int e^{32+2 x} \left (-5-e^2-2 \left (4+e^2\right ) x\right ) \, dx\\ &=-e^3 x+e^3 \left (5+e^2\right ) x-\frac {x^2}{2}+\frac {1}{2} \left (9+2 e^2\right ) x^2-\frac {1}{2} e^{32+2 x} \left (5+e^2+2 \left (4+e^2\right ) x\right )+\frac {1}{2} e^{32+2 x} \log (x)+e^3 x \log (x)+x^2 \log (x)-\frac {1}{2} e^{32+2 x} (1+2 x) \log (x)-\left (-4-e^2\right ) \int e^{32+2 x} \, dx+\int e^{32+2 x} \, dx\\ &=\frac {1}{2} e^{32+2 x}+\frac {1}{2} e^{32+2 x} \left (4+e^2\right )-e^3 x+e^3 \left (5+e^2\right ) x-\frac {x^2}{2}+\frac {1}{2} \left (9+2 e^2\right ) x^2-\frac {1}{2} e^{32+2 x} \left (5+e^2+2 \left (4+e^2\right ) x\right )+\frac {1}{2} e^{32+2 x} \log (x)+e^3 x \log (x)+x^2 \log (x)-\frac {1}{2} e^{32+2 x} (1+2 x) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 26, normalized size = 1.13 \begin {gather*} -\left (\left (-e^3+e^{32+2 x}-x\right ) x \left (4+e^2+\log (x)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 57, normalized size = 2.48 \begin {gather*} x^{2} e^{2} + 4 \, x^{2} + x e^{5} + 4 \, x e^{3} - {\left (x e^{2} + 4 \, x\right )} e^{\left (2 \, x + 32\right )} + {\left (x^{2} + x e^{3} - x e^{\left (2 \, x + 32\right )}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.38, size = 75, normalized size = 3.26 \begin {gather*} x {\left (e^{2} + 5\right )} e^{3} + x^{2} e^{2} + 4 \, x^{2} - x e^{3} - x e^{\left (2 \, x + 34\right )} - \frac {1}{2} \, {\left (8 \, x + 1\right )} e^{\left (2 \, x + 32\right )} + {\left (x^{2} + x e^{3} - x e^{\left (2 \, x + 32\right )}\right )} \log \relax (x) + \frac {1}{2} \, e^{\left (2 \, x + 32\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 59, normalized size = 2.57
method | result | size |
norman | \(x^{2} \ln \relax (x )+\left (4+{\mathrm e}^{2}\right ) x^{2}+\left (4 \,{\mathrm e}^{3}+{\mathrm e}^{2} {\mathrm e}^{3}\right ) x +x \,{\mathrm e}^{3} \ln \relax (x )+\left (-{\mathrm e}^{2}-4\right ) x \,{\mathrm e}^{2 x +32}-\ln \relax (x ) {\mathrm e}^{2 x +32} x\) | \(59\) |
risch | \(x \,{\mathrm e}^{5}+4 x \,{\mathrm e}^{3}-x \,{\mathrm e}^{2 x +34}+x^{2} {\mathrm e}^{2}-\ln \relax (x ) {\mathrm e}^{2 x +32} x +x \,{\mathrm e}^{3} \ln \relax (x )+x^{2} \ln \relax (x )-4 \,{\mathrm e}^{2 x +32} x +4 x^{2}\) | \(63\) |
default | \(\left ({\mathrm e}^{2}+5\right ) {\mathrm e}^{3} x -2 \,{\mathrm e}^{2 x +32} \left (2 x +32\right )+64 \,{\mathrm e}^{2 x +32}+\frac {31 \,{\mathrm e}^{2} {\mathrm e}^{2 x +32}}{2}-\frac {{\mathrm e}^{2} \left ({\mathrm e}^{2 x +32} \left (2 x +32\right )-{\mathrm e}^{2 x +32}\right )}{2}+x^{2} \ln \relax (x )+4 x^{2}+x \,{\mathrm e}^{3} \ln \relax (x )-x \,{\mathrm e}^{3}-\ln \relax (x ) {\mathrm e}^{2 x +32} x +x^{2} {\mathrm e}^{2}\) | \(105\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 72, normalized size = 3.13 \begin {gather*} x {\left (e^{2} + 5\right )} e^{3} + x^{2} e^{2} + 4 \, x^{2} - x e^{3} - \frac {1}{2} \, {\left (2 \, x {\left (e^{34} + 4 \, e^{32}\right )} + e^{32}\right )} e^{\left (2 \, x\right )} + {\left (x^{2} + x e^{3} - x e^{\left (2 \, x + 32\right )}\right )} \log \relax (x) + \frac {1}{2} \, e^{\left (2 \, x + 32\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.88, size = 20, normalized size = 0.87 \begin {gather*} x\,\left (x+{\mathrm {e}}^3-{\mathrm {e}}^{2\,x+32}\right )\,\left ({\mathrm {e}}^2+\ln \relax (x)+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 51, normalized size = 2.22 \begin {gather*} x^{2} \left (4 + e^{2}\right ) + x \left (4 e^{3} + e^{5}\right ) + \left (x^{2} + x e^{3}\right ) \log {\relax (x )} + \left (- x \log {\relax (x )} - x e^{2} - 4 x\right ) e^{2 x + 32} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________